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Preface

The purpose and motivation of these lectures can be summarized in the following
two questions:

• What is the ground state (and its properties) of dense matter?
• What is the matter composition of a compact star?

The two questions are, of course, strongly coupled to each other. Depending on your
point of view, you can either consider the first as the main question and the second
as a consequence or application of the first, or vice versa.

If you are interested in fundamental questions in particle physics you may take
the former point of view: you ask the question what happens to matter if you squeeze
it more and more. This leads to fundamental questions because at some level of
sufficient squeezing you expect to reach the point where the fundamental degrees
of freedom and their interactions become important. That is, at some point you will
reach a form of matter where not molecules or atoms, but the constituents of an
atom, namely neutrons, protons, and electrons, are the relevant degrees of freedom.
This form of matter, and its variants, constitute one important topic of these lec-
tures and is termed nuclear matter. If you squeeze further, you might reach a level
where the constituents of neutrons and protons, namely quarks and gluons, become
relevant degrees of freedom. This form of matter, termed quark matter or strange
quark matter, is the second important subject we shall discuss. By studying dense
matter, we shall thus learn a lot about the fundamental theories and interactions of
elementary particles. When trying to understand this kind of dense matter, we would
like to perform experiments and check whether our fundamental theories work or
whether there are new phenomena, or maybe even new theories, that we have not
included into our description. Unfortunately, there are currently no experiments on
earth which can produce matter at such ultra-high densities we are talking about.
However, this does not mean that this kind of matter does not exist in nature. On
the contrary, we are pretty sure that we have observed objects that contain matter
at ultra-high density, namely compact stars. We may thus consider compact stars
as our “laboratory”. Thinking about the first question has therefore led us to the
second.

If you are primarily interested in phenomenology, or if you are an astrophysicist,
you may start from the second question: you observe a compact star in nature and
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vi Preface

would like to understand its properties. In this case you start from observations like
the rotation frequency, the temperature of the star etc. and ask, why does the star
rotate so slow/so fast, why does it cool down so slow/so fast? And these questions
will inevitably lead you to the attempt to figure out the microscopic structure of the
star, although you have started from macroscopic observables. You need to know
whether the star contains nuclear matter or quark matter or both, in which phase the
respective matter is present, and which properties these phases have. It is thus very
natural, also from the astrophysicist’s point of view, to study the first question.

In any case, we see that both questions are closely related and we don’t have
to decide which of the two points of view we take. If I have to characterize what
awaits you in these lectures I would nevertheless say that we shall lean a bit more
towards the fundamental aspects. In other words, we shall neglect many complica-
tions that arise from considering a realistic compact star. A star is a finite system, it
is inhomogeneous, it underlies the laws of general relativity etc. Although our dis-
cussions are always motivated by the astrophysical application, we mostly discuss
infinite, homogeneous systems and do not elaborate on general relativistic effects.
Only in discussing the consequences of our microscopic calculations we shall, on a
qualitative level, discuss the more realistic setting.

So what kind of physics will we discuss and which theoretical tools do we need?
Since our focus is on nuclear and quark matter, the dominant interaction that governs
the states of matter we are interested in is the strong interaction. The underlying the-
ory for this interaction is Quantum Chromodynamics (QCD). Although this theory
is uniquely determined by very simple symmetry principles, it is extremely hard
to solve for most applications. Unfortunately (or fortunately, because this makes it
interesting and challenging) matter at compact star densities eludes rigorous first-
principle calculations. Therefore, we often have to retreat to simple phenomenolog-
ical models or have to perform rigorous QCD calculations at asymptotically large
densities and then extrapolate the results down to the density regime we are inter-
ested in.

In the physics of compact stars also the weak interaction plays an important role.
We shall see that it is responsible for the chemical equilibration of the system, i.e.,
it fixes the various chemical potentials. It is also important for the understanding of
cooling mechanisms of the star or for transport properties of nuclear and quark mat-
ter. Furthermore, our (mostly field-theoretical) treatment always includes nonzero
chemical potentials and sometimes nonzero temperature (for many applications the
zero-temperature approximation is sufficient). In this sense it goes beyond the stan-
dard vacuum field theory formalism. Basic elements of thermal quantum field theory
at finite chemical potential are therefore explained in the appendix.

All this may sound exciting on the one hand, because it shows that the physics
of compact stars is extremely rich (due to the diversity of involved physics I found
it helpful to include a glossary of important terms at the end of these lecture notes).
But on the other hand it may also sound like a big challenge for you if you are not
familiar with advanced field theory. Nevertheless, these lecture notes are not pri-
marily intended as a review for researchers (although they might find it useful too)
but as a pedagogical introduction for graduate students and advanced undergraduate
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students. For some of our discussions all you need as a prerequisite is some knowl-
edge in thermodynamics and statistical physics, for instance in Chap. 2, which deals
almost exclusively with noninteracting systems. Some other sections, for instance
the calculation of the neutrino emissivity in Chap. 5 indeed makes use of advanced
field-theoretical methods at finite temperature. It is not the intention of these lectures
to develop the theoretical tools in all details before we use them. More importantly,
all calculations are physically motivated, thus by understanding the physics behind
the results and calculations, these lectures aim at making you familiar with the the-
ories and technicalities via “learning by doing”. So at the end of these lectures you
will have heard about the basic phenomena and possible microscopic explanations
of the physics of compact stars, but also will be prepared to start theoretical research
in this exciting field yourself, to possibly contribute to the answers to the two ques-
tions we have started with.

These lectures are based on a course given in the summer semester 2009 at the
Vienna University of Technology. I thank all participants of this course for the lively
discussions and the numerous questions and comments that helped improve these
lecture notes. I am also grateful to M. Alford, P. Jaikumar, P. van Nieuwenhuizen,
F. Preis, A. Rebhan, T. Schäfer, I. Shovkovy, S. Stricker, N.-O. Walliser, Q. Wang,
and F. Weber for helpful comments and discussions.

Vienna Andreas Schmitt
January 2010
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Chapter 1
Introduction

1.1 What Is Dense Matter?

The QCD phase diagram collects the equilibrium phases of QCD in the plane of
quark (or baryon) chemical potential μ and temperature T . We show a sketch of
this phase diagram in Fig. 1.1. In this introduction, we are not concerned with the
details of this diagram. We observe that compact stars, on the scales of this diagram,
live in the region of small temperatures and intermediate densities. They may live
in the region where quarks are confined, i.e., in the hadronic phase. This would
imply that they are neutron stars. They may also live in the deconfined region which
would make them quark stars. A compact star may also contain both deconfined
and confined quark matter because the star actually has a density profile rather than
a homogeneous density. In the interior, we expect the density to be larger than at
the surface. Therefore, the third possibility is a hybrid star with a quark core and a
nuclear mantle.

We do currently not know the exact location of most of the phase transition lines
in Fig. 1.1. Therefore, we do not know the ground state of strongly-interacting quark
(or nuclear) matter at the relevant density. As a consequence, we can to some extent
only speculate about the matter composition of the star. The reason is, simply speak-
ing, that QCD is notoriously hard to solve for temperatures and densities present in
a compact star. With the help of the phase diagram we can put this statement in a
wider context: QCD is asymptotically free, which means that for large momentum
exchange the interaction becomes weak. Hence, at sufficiently large temperatures
and/or densities, we deal with weakly interacting quarks and gluons. In the case of
large densities (or large chemical potentials) this can be understood from the uncer-
tainty principle which relates small distances (the interacting particles are very close
to each other) to large momenta. As a result of asymptotic freedom, regions in the
phase diagram where μ and/or T are sufficiently large can be understood from rigor-
ous first-principle calculations. These regions, although theoretically under control,
are far from being experimentally (even astrophysically) accessible.

If we now go to lower temperatures and densities we have to cross a large
unknown territory. Only at small temperatures and densities, when we are deep in
the hadronic phase we have reached an area which again is under control, at least to

Schmitt, A.: Introduction. Lect. Notes Phys. 811, 1–6 (2010)
DOI 10.1007/978-3-642-12866-0_1 c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1 Conjectured phase diagram of QCD in the plane of quark chemical potential μ and tem-
perature T . While matter at low density and high temperature is probed in heavy-ion collisions,
cold and dense matter can only be found in neutron stars (compact stars). We may find (superfluid)
nuclear matter and/or deconfined quark matter inside a star. Deconfined quark matter is, at high
temperatures, termed quark-gluon plasma (QGP) and is, at low temperatures, expected to be in a
color-superconducting state, here labelled by CFL (color-flavor locking), discussed in Sect. 4.2,
and non-CFL (some color superconductor other than CFL)

some extent. Theoretically, it is more complicated than the perturbatively treatable
asymptotic regions. After all, hadrons are quite complicated objects once we try to
describe them in terms of their constituents. However, we can use effective descrip-
tions which can be supported, confirmed, and improved by experiments in the lab.
Furthermore, at least for vanishing chemical potentials, we can perform brute-force
QCD calculations on the computer which gives us solid theoretical knowledge for
certain quantities (at nonvanishing chemical potentials these calculations are prob-
lematic due to the so-called sign problem).

We thus see that compact stars (as well as the quark-gluon plasma created in
heavy-ion collisions) reside in a region of the phase diagram which is hard to access.
More positively speaking, this region is interesting and challenging because exciting
and unknown physics may be discovered and new theoretical tools may need to be
developed. Or, in other words, the cold and dense matter we talk about in these lec-
tures is interesting from the theoretical point of view because, on the characteristic
scale of QCD, it is only moderately, not extremely, dense.

The theoretical tools used in current research to describe cold and dense matter
are based on the above observations: if we describe quark matter we may use per-
turbative methods which are valid at asymptotically large densities and extrapolate
the results down to intermediate densities. We shall do so for instance in Chap. 2
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where we treat quarks as noninteracting or in Sect. 4.3 where we calculate the color-
superconducting gap within perturbative QCD. However, we have to be aware that
the extrapolation of the results pushes the calculations out of their range of validity
by many orders of magnitude. On the other hand, we may use models for nuclear
matter which are established at low densities by experimental data. We do so for
instance in Chap. 3. This time we have to extrapolate to larger densities. Again, the
extrapolation is in principle uncontrolled.

These theoretical challenges emphasize the significance of astrophysical obser-
vations: we do not simply like to confirm the results of our calculations by using
astrophysical data, we need astrophysical input to understand the theory which we
believe to be the underlying theory of strongly interacting matter, namely QCD.
Therefore, the connection between astrophysical observables and microscopic cal-
culations is one of the main subjects of these lectures.

1.2 What Is a Compact Star?

Only beaten by black holes, compact stars are the second-densest objects in nature.
They have masses of the order of the mass of the sun, M ∼ 1.4 M�, but radii of only
about ten kilometers, R ∼ 10 km. Thus the mass of the sun M� = 1.989 · 1033 g
is concentrated in a sphere with a radius 105 times smaller than that of the sun,
R� = 6.96 · 105 km. We thus estimate the average mass density in a compact star
to be

ρ � 7 · 1014 g cm−3 . (1.1)

This is a few times larger than the density present in heavy nuclei, the nuclear ground
state density

ρ0 = 2.5 · 1014 g cm−3 , (1.2)

which corresponds to a baryon number density of n0 � 0.15 fm−3. Mass and radius
of the star are determined by the equation(s) of state of the matter phase(s) inside
the star. This is the subject of Chap. 2.

In the traditional picture of a compact star, the star is made out of neutron-rich
nuclear matter. Hence the traditional name is actually neutron star. This is some-
times still the preferred term, even if one talks about a star that contains a quark
matter core (which then might be called “exotic neutron star”). Here we shall always
use the more general term compact star to include the possibilities of more exotic
matter; after all, a significant part of these lectures is about this exotic matter. The
term compact star will thus be used in these lectures for an object with characteristic
mass, radius etc. as given in this subsection. It can either be made of nuclear matter
or variants thereof (neutron star), of a quark matter core with a surrounding mantle
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of nuclear matter (hybrid star) or exclusively of (strange) quark matter (quark star
or strange star).1 Here are a few more basic properties of compact stars:

• Compact stars are born in a supernova, a spectacular explosion of a giant or
supergiant star due to the gravitational collapse of its core. Supernovae are very
complex, nonequilibrium processes which astrophysicists try to understand with
hydrodynamic simulations. We shall not be concerned with supernovae in these
lectures but should keep in mind that some properties of the star may be a result
of these violent explosions. A possible example is the high velocity with which
some of the compact stars travel through space.

• Compact stars are not only extreme with respect to their density. Some of them
also rotate very fast with rotation periods in the millisecond regime, such that
their frequencies are

ν � 1 ms−1 . (1.3)

To see that this is really fast, notice that a point on the equator has a velocity
of 2πR/1ms � 0.2 c, i.e., it moves with 20% of the speed of light. The current
record holder is the star PSR J1748-2446ad,2 rotating with a period of 1.39 ms.
Several observations are related to the rotation frequency. First of all, compact
stars have been discovered as pulsars, by observing pulsating radio signals, for
the first time in 1967. These periodic signals are due to the lighthouse effect, i.e.,
radio emission is aligned in a beam along the magnetic axis of the pulsar which
spins around the rotation axis, crossing the earth’s telescopes periodically. More
interestingly for our purpose, the pure fact that the rotation of some compact stars
can be so fast requires some explanation. From the microscopic point of view, this
is related to transport properties such as viscosity of the matter inside the star, see
Sect. 6.2. Also pulsar glitches, sudden jumps in the rotation frequency, must find
an explanation in the properties of dense matter.

• Compact stars also have huge magnetic fields,

B ∼ 1012 G . (1.4)

Even larger surface magnetic fields of the order of B ∼ 1015 G have been obser-
ved (the magnetic field in the core of the star possibly being even higher). Such
highly magnetized stars are also termed magnetars. Compare these magnetic
fields for instance to the earth’s magnetic field, B ∼ 0.6 G, a common hand-held

1 The term compact star is in general also used to include white dwarfs, stars which are less dense
than neutron stars, hybrid stars, or quark stars, and sometimes even to include black holes. Since
we are not concerned with either of these objects here, we can reserve the term compact star as
explained in the text.
2 The label of the star says that it is a “Pulsating Source of Radio emission” (PSR) located on the
celestial sphere at right ascension 17 h 48 min with −24◦ 46′ declination; the “J” indicates the use
of the J2000 coordinate system, the suffix “ad” is used to distinguish the object from other pulsars
in the same globular cluster Terzan 5.
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magnet, B ∼ 100 G, or the strongest steady magnetic fields in the laboratory,
B ∼ 4.5 · 105 G.

• Compact stars are cold. This may sound odd, given their temperatures which,
right after they are born in a supernova explosion, can be as high as T ∼ 1011 K.
This corresponds, in units where the Boltzmann constant is one, kB = 1, to
T ∼ 10 MeV. During the evolution of the star, the temperature decreases down
to temperatures in the keV range. The dominant cooling mechanism is neutrino
emission which we discuss in Chap. 5. There are two reasons why in our con-
text it is appropriate to call compact stars cold, in spite of the apparently large
temperatures. First, temperatures in the keV range are small compared to the
scale set by QCD, for instance the deconfinement transition at vanishing quark
chemical potential of about Tc � 170 MeV. This means compact stars are located
basically on the horizontal axis in the QCD phase diagram in Fig. 1.1. Second,
temperatures in compact stars are small compared to the quark (or baryon) chem-
ical potential, T � μ. This is important for our calculations since it implies that
T = 0 is a good approximation in many cases.

1.3 Further Reading

Before we start with the main part, let’s mention some literature. Extensive text-
books about compact stars are Refs. [1–3]. A shorter introduction to compact
stars and dense matter can be found in the review article [4]. Similar reviews are
Refs. [5, 6], with emphasis on quark matter, and Ref. [7], with emphasis on astro-
physical observations. A more theoretical review about quark matter (more pre-
cisely, about color-superconducting quark matter), with a section about compact star
applications is Ref. [8]. For an introduction to thermal field theory see the textbooks
[9] and [10], on which the appendix of these lecture notes is partially based. As
became clear above, in this course we shall deal with questions which are under
debate in current research. Therefore, some of the material included here has so far
only been available in research papers. The respective references will be given in
the various chapters. I will not try to be exhaustive in the reference list but rather
point out selected references which are useful for a deeper understanding of what
we discuss in these lectures. If you are interested in more references you can find
plenty in the quoted papers and textbooks.
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Chapter 2
Mass and Radius of the Star

In this chapter, we will discuss the most basic properties of a compact star, its mass
and radius. We have already given typical values for these quantities above. Below
we shall connect them with microscopic properties of nuclear and quark matter. This
connection is made by the equation of state from which, in particular, an estimate for
the maximum mass of the star can be obtained. Let us begin with a simple estimate
of mass and radius from general relativity. For the stability of the star we need
R > Rs where R is the radius of the star, and Rs = 2MG the Schwarzschild
radius, with the mass of the star M and the gravitational constant G = 6.672 ·
10−11 m3kg−1s−2 = 6.707 · 10−39 GeV−2. (We shall mostly use units common in
nuclear and particle physics, h̄ = c = kB = 1, although astrophysicists often use
different units.) For R < Rs the star becomes unstable with respect to the collapse
into a black hole. Let us build a simple star made out of a number of nucleons A
with mass m � 939 MeV and a distance r0 � 0.5 · 10−13 cm (that’s where the
nucleon interaction becomes repulsive). We thus cover a volume ∼ r3

0 A and thus
have a radius

R ∼ r0 A1/3 , (2.1)

(for our rough estimate we are not interested in factors of π ), and a mass

M ∼ m A . (2.2)

Now from the limit R = 2MG we obtain

A ∼
( r0

2mG

)3/2 ∼ 2.6 · 1057 . (2.3)

This is the number of nucleons up to which we can fill our star before it gets
unstable. In other words, the Schwarzschild radius is proportional to the mass of
the star and thus increases linearly in the number of nucleons A, while the radius
increases with A1/3; therefore, for A smaller than the limit A ∼ 2.6 · 1057 the star

Schmitt, A.: Mass and Radius of the Star. Lect. Notes Phys. 811, 7–27 (2010)
DOI 10.1007/978-3-642-12866-0_2 c© Springer-Verlag Berlin Heidelberg 2010
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is stable, while it collapses into a black hole for nucleon numbers larger than this
limit. We can plug the limit value for A back into the radius and mass of the star to
obtain

R ∼ 7 km , M ∼ 2.3 M� . (2.4)

Adding more nucleons would make the star too heavy in relation to its radius. We
see that these values are not too far from the observed ones given in Sect. 1.2.

Besides giving an estimate for the baryon number in the star, we see from
this simple exercise that general relativistic effects will be important because the
Schwarzschild radius will be a significant fraction of the radius of the star. We
can also estimate the gravitational energy of the star. To this end, we need the
differential mass of the star at a given radius (i.e., the mass of a thin spherical
layer)

dm = ρ(r) dV , (2.5)

where dV = 4πr2dr is the volume of the thin spherical layer at radius r . For a
rough estimate let us (unrealistically) assume a constant density ρ(r) = ρ such that
the mass m(r) of the star up to a radius r ≤ R, is given by m(r) = 4π

3 r3ρ. Then we
obtain

Egrav �
∫ R

0

Gm(r) dm(r)

r
� 3

5

G M2

R
� 0.12 M , (2.6)

where we have used the above realistic values M � 1.4 M� and R � 10 km. We
thus see that the gravitational energy Egrav is more than 10% of the mass of the star.
This suggests that for the mass-radius relation we need an equation that incorpo-
rates effects from general relativity. For simplicity, let us first derive the equation
that relates mass and radius without general relativistic effects and include them
afterwards. We are looking for an equation that describes equilibrium between the
gravitational force, seeking to compress the star, and the opposing force coming
from the pressure of the matter inside the star. In the case of a compact star, this
pressure is the Fermi pressure plus the pressure coming from the strong interactions
of the nuclear or quark matter inside. The differential pressure dP at a given radius
r is related to the gravitational force dF via

dP = dF

4πr2
, (2.7)

with

dF = −Gm(r) dm

r2
. (2.8)



2.1 Noninteracting Nuclear Matter 9

The equation for the differential mass (2.5), together with Eq. (2.7) [into which we
insert Eqs. (2.5) and (2.8)], yields the two coupled differential equations,

dm

dr
= 4πr2ε(r) , (2.9a)

dP

dr
= −Gε(r)m(r)

r2
. (2.9b)

where we have expressed the mass density through the energy density ε(r) = ρ(r)
(in units where c = 1). The second equation, which is easy to understand from
elementary Newtonian physics, receives corrections from general relativity. It is
beyond the scope of these lectures to derive these corrections. We simply quote
the resulting equation,

dP

dr
= −Gε(r)m(r)

r2

[
1 + P(r)

ε(r)

] [
1 + 4πr3 P(r)

m(r)

] [
1 − 2Gm(r)

r

]−1

. (2.10)

This equation is called Tolman–Oppenheimer–Volkov (TOV) equation and the
derivation can be found for instance in Ref. [1]. In order to solve it, one first needs
the energy density for a given pressure. Only then do we have a closed system
of equations. This input is given from the microscopic physics which yields an
equation of state in the form P(ε). We have thus found a first example how the
microscopic physics can potentially be “observed” from astrophysical data, namely
from mass and radius of the star. We shall encounter many more of these examples.
The equations of state for noninteracting nuclear and quark matter will be discussed
in the subsequent sections.

For a given equation of state one needs two boundary conditions for the TOV
equation. The first is obviously m(r = 0) = 0, the second is a boundary value for
the pressure in the center of the star, P(r = 0) = P0. Then, the solution of the
equations will produce a mass and pressure profile m(r), P(r) with the pressure
going to zero at some point r = R, giving the radius of the star. The mass of the star
is then read off at this point, M = m(R). Doing this for varying initial pressures
P0 yields a curve M(R) in the mass-radius plane, parametrized by P0. This curve
depends strongly on the chosen equation of state.

2.1 Noninteracting Nuclear Matter

We start with a very simple system where we neglect all interactions. In this case,
all we need is basic statistical physics and thermodynamics. The thermodynamic
potential for the grand-canonical ensemble is given by

Ω = E − μN − T S , (2.11)
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with the energy E , chemical potential μ, particle number N , temperature T and
entropy S. The pressure is then

P = −Ω

V
= −ε + μn + T s , (2.12)

where V is the volume of the system. Number density n = N/V , energy density
ε = E/V , and entropy density s = S/V are, for a fermionic system, given by

n = 2
∫

d3k
(2π)3

fk , (2.13a)

ε = 2
∫

d3k
(2π)3

Ek fk , (2.13b)

s = −2
∫

d3k
(2π)3

[
(1 − fk) ln(1 − fk) + fk ln fk

]
. (2.13c)

We shall first be interested in a system of neutrons (n), protons (p), and electrons
(e), each giving a contribution to the pressure according to Eqs. (2.12) and (2.13).
Since they are spin- 1

2 fermions, we have included a factor 2 for the two degenerate
spin states. The Fermi distribution function is denoted by fk ,

fk ≡ 1

e(Ek−μ)/T + 1
, (2.14)

and the single-particle energy is

Ek =
√

k2 + m2 . (2.15)

Inserting number density, energy density, and entropy density into the pressure
(2.12) yields

P = 2T
∫

d3k
(2π)3

ln
[
1 + e−(Ek−μ)/T

]
. (2.16)

This corresponds to the result obtained from field-theoretical methods in
Appendix A.2, see Eq. (A.71). There also the antiparticle contribution is included,
which can here, due to the large positive chemical potential, safely be neglected.
One can easily check that number density and entropy are obtained from the pres-
sure (2.16) via the usual thermodynamic relations, i.e., by taking the derivatives
with respect to μ and T . For the following we now take the limit T = 0. This is
a good approximation since the temperature of a compact star is typically in the
keV range and thus much smaller than the chemical potentials and masses of the
nucleons.
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For T = 0 the Fermi distribution is a step function, fk = Θ(kF − k), and thus
the k integrals will be cut off at the Fermi momentum kF , i.e.,

n = 1

π2

∫ kF

0
dk k2 = k3

F

3π2
, (2.17a)

ε = 1

π2

∫ kF

0
dk k2

√
k2 + m2

= 1

8π2

⎡
⎣(2k3

F + m2kF

)√
k2

F + m2 − m4 ln
kF +

√
k2

F + m2

m

⎤
⎦ . (2.17b)

Then, with μ =
√

k2
F + m2, the pressure is

P = 1

π2

∫ kF

0
dk k2

(
μ −

√
k2 + m2

)

= 1

24π2

⎡
⎣(2k3

F − 3m2kF

)√
k2

F + m2 + 3m4 ln
kF +

√
k2

F + m2

m

⎤
⎦ . (2.18)

This can either be obtained by inserting Eqs. (2.17a) and (2.17b) into Eq. (2.12) or,
equivalently, by taking the T = 0 limit in Eq. (2.16). For the latter one makes use
of limT →0 T ln(1 + ex/T ) = x Θ(x).

For n, p, e matter, the total pressure is

P = 1

π2

∑
i=n,p,e

∫ kF,i

0
dk k2

(
μi −

√
k2 + m2

i

)
. (2.19)

The Fermi momenta can be thought of as variational parameters which have to be
determined from maximizing the pressure, i.e., from the conditions

∂P

∂kF,i
= 0 , i = n, p, e , (2.20)

which implies

μi =
√

k2
F,i + m2

i . (2.21)
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We have additional constraints on the Fermi momenta from the following two condi-
tions. Firstly, we have to require the star to be electrically neutral,1, i.e., the densities
of protons and electrons has to be equal,

ne = n p . (2.25)

With Eq. (2.17a) this means

kF,e = kF,p . (2.26)

Secondly, we require chemical equilibrium with respect to the weak processes

n → p + e + ν̄e , (2.27a)

p + e → n + νe . (2.27b)

The first of these processes is the usual β-decay, the second is sometimes called
inverse β-decay or electron capture. We shall assume that the neutrino chemical
potential vanishes, μνe = 0. This is equivalent to assuming that neutrinos and
antineutrinos, once created by the above processes, simply leave the system without
further interaction. This assumption is justified for compact stars since the neutrino
mean free path is of the order of the size of the star or larger (except for the very

1 In fact, a compact star has to be electrically neutral to a very high accuracy, as one can see from
the following simple estimate. Suppose the star has an overall charge of Z times the elementary
charge, Ze, and we consider the Coulomb repulsion of a test particle, say a proton, with mass
m and charge e (e having the same sign as the hypothetical overall charge of the star Ze). The
Coulomb force, seeking to expel the test particle, has to be smaller than the gravitational force,
seeking to keep the test particle within the star. This gives the condition

(Ze)e

R2
≤ GMm

R2
, (2.22)

with the mass M and radius R of the star. Even if we are generous with the limit on the right-hand
side by assigning the upper limit M < Am to the mass of the star (if the star contains A nucleons,
its total mass will be less than Am due to the gravitational binding energy), we will get a very
restrictive limit on the overall charge. Namely, we find

(Ze)e

R2
<

GAm2

R2
⇒ Z < G

m2

e2
A . (2.23)

With the proton mass m ∼ 103 MeV, the elementary charge e2 ∼ 10−1 (remember α = e2/(4π)
� 1/137), and the gravitational constant G ∼ 7 · 10−39 GeV−2, we estimate

Z < 10−37 A , (2.24)

i.e., the average charge per nucleon has to be extremely small in order to ensure the stability of the
star. Since we have found such an extremely small number, it is irrelevant for the argument whether
we use a proton or an electron as a test particle. The essence of this argument is the weakness of
gravitation compared to the electromagnetic interactions: a tiny electric charge per unit volume,
distributed over the star, is sufficient to overcome the stability from gravity.
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early stages in the life of the star). Consequently, β-equilibrium, i.e., equilibrium
with respect to the processes (2.27), translates into the following constraint for the
chemical potentials,

μn = μp + μe . (2.28)

Inserting Eq. (2.21) into this constraint yields

√
k2

F,n + m2
n =

√
k2

F,p + m2
p +

√
k2

F,e + m2
e . (2.29)

We can eliminate the electron Fermi momentum with the help of Eq. (2.26) and
solve this equation to obtain the proton Fermi momentum as a function of the neu-
tron Fermi momentum,

k2
F,p = (k2

F,n + m2
n − m2

e)
2 − 2(k2

F,n + m2
n + m2

e)m
2
p + m4

p

4(k2
F,n + m2

n)
. (2.30)

To illustrate the physical meaning of this relation, let us consider some limit cases.
First assume a vanishing proton contribution, kF,p = 0. Then the equation gives
[which is most easily seen from Eq. (2.29)]

k2
F,n = (m p + me)

2 − m2
n < 0 . (2.31)

This expression is negative because the neutron is slightly heavier than the electron
and the proton together, m p � 938.3 MeV, mn � 939.6 MeV, me � 0.511 MeV.
Therefore, kF,p = 0 is impossible and there always has to be at least a small fraction
of protons. Now let’s assume kF,n = 0, which leads to

k2
F,p =

(
m2

n + m2
e − m2

p

2mn

)2

− m2
e � 1.4 MeV2 . (2.32)

This is the threshold below which there are no neutrons and the charge neutral sys-
tem in β-equilibrium contains only protons and electrons of equal number density.

In general, we may consider a given baryon density nB = nn + n p to express the
neutron Fermi momentum as

kF,n = (3π2nB − k3
F,p)

1/3 . (2.33)

Inserting this into Eq. (2.30) yields an equation for kF,p as a function of the baryon
density. In the ultrarelativistic limit, i.e., neglecting all masses, Eq. (2.30) obviously
yields kF,p = kF,n/2 and thus n p = nn/8 or

n p = nB

9
. (2.34)
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By solving Eq. (2.30) numerically one can check that this limit is approached from
below for large baryon densities, i.e., in a compact star containing nuclear matter
we deal with neutron-rich matter, which justifies the term neutron star.

As a crude approximation we may thus consider the simple case of pure neutron
matter. We also consider the nonrelativistic limit, mn  kF,n . In this case, the
energy density (2.17b) and the pressure (2.18) become

ε � m4
n

3π2

[
k3

F,n

m3
n

+ O
(

k5
F,n

m5
n

)]
, (2.35a)

P � m4
n

15π2

[
k5

F,n

m5
n

+ O
(

k7
F,n

m7
n

)]
. (2.35b)

(To see this, note that the ln term cancels the term linear in kF in the case of ε, and
the linear and cubic terms in kF in the case of P .) Consequently, keeping the terms
to lowest order in kF,n/mn ,

P(ε) �
(

3π2

mn

)5/3
ε5/3

15mnπ2
. (2.36)

We have thus found a particularly simple equation of state, where the pressure is
given by a power of the energy density. The general (numerical) discussion of the
equation of state, including protons and electrons, is left to the reader, see Prob-
lem 2.1.

The next step to obtain the mass-radius relation of the star is to insert the equation
of state into the TOV equation. The simplest case is a power-law behavior as in
Eq. (2.36). The general form of such a so-called “polytropic” equation of state is

P(ε) = K εγ . (2.37)

Using the Newtonian form of the mass-radius equations, Eqs. (2.9), this yields

dm

dr
= 4π

K 1/γ
r2 P1/γ (r) , (2.38a)

d P

dr
= − G

K 1/γ

P1/γ (r)m(r)

r2
. (2.38b)

Even in this simplest example, we need to solve the equations numerically, see Prob-
lem 2.2. The results of this problem show that the maximum mass reached within
this model is about M < 0.7M� which is well below observed neutron star masses.
(See also Refs. [2–4] for a pedagogical introduction into the equation of state and
mass-radius relation from solving the TOV equation.) This small maximum mass is
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a consequence of the assumption of noninteracting nucleons. Taking into account
interactions will increase the maximum mass significantly.

2.2 Noninteracting Quark Matter

Whenever we talk about quark matter in these lectures we ignore the charm (c),
bottom (b), and top (t) quarks. The quark chemical potential inside the star is at
most of the order of 500 MeV and thus much too small to create a population of
these states. Therefore, we only consider at most three quark flavors, namely up
(u), down (d), and strange (s). We shall mostly neglect the masses of the u and d
quarks; their current masses are mu � md � 5 MeV � μ � (300 − 500)MeV.
The mass of the strange quark, however, is not negligible. The current strange
quark mass is ms � 90 MeV, and the density-dependent constituent mass can
be significantly larger, making it non-negligible compared to the quark chemical
potential.

If we consider free quarks, the energy density ε, the number density n, and
the pressure P , are obtained in the same way as demonstrated for nucleons in
the previous subsection. We only have to remember that there are three colors for
each quark flavor, Nc = 3, i.e., the degeneracy factor for a single quark flavor is
2Nc = 6, where the factor 2 counts the spin degrees of freedom. Consequently,
for each quark flavor f = u, d, s we have at zero temperature [cf. Eqs. (2.17) and
(2.18)],

n f = k3
F, f

π2
, (2.39a)

ε f = 3

π2

∫ kF, f

0
dk k2

√
k2 + m2

f , (2.39b)

Pf = 3

π2

∫ kF, f

0
dk k2

(
μ f −

√
k2 + m2

f

)
. (2.39c)

Again, we need to impose equilibrium conditions with respect to the weak interac-
tions. In the case of three-flavor quark matter, the relevant processes are the leptonic
processes (including a neutrino or an antineutrino)

d → u + e + ν̄e , s → u + e + ν̄e , (2.40a)

u + e → d + νe , u + e → s + νe , (2.40b)

and the non-leptonic process

s + u ↔ d + u . (2.41)
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These processes yield the following conditions for the quark and electron chemical
potentials,

μd = μe + μu , μs = μe + μu . (2.42)

(This automatically implies μd = μs .) The charge neutrality condition can be writ-
ten in a general way as

∑
f =u,d,s

q f n f − ne = 0 , (2.43)

with the electric quark charges

qu = 2

3
, qd = qs = −1

3
, (2.44)

and the electron density ne.

2.2.1 Strange Quark Matter Hypothesis

Before computing the equation of state, we discuss the strange quark matter hypoth-
esis within the so-called bag model. The bag model is a very crude phenomenolog-
ical way to incorporate confinement into the description of quark matter. The effect
of confinement is needed in particular if we compare quark matter with nuclear
matter (which is ultimately what we want to do in this section). Put another way,
although we speak of noninteracting quarks, we need to account for a specific – in
general very complicated – aspect of the interaction, namely confinement.

To understand how the bag constant accounts for confinement, we compare the
pressure of a noninteracting gas of massless pions with the pressure of a noninteract-
ing gas of quarks and gluons at finite temperature and zero chemical potential. The
pressure of a single bosonic degree of freedom at μ = 0 and at large temperatures
compared to the mass of the boson is

Pboson � −T
∫

d3k
(2π)3

ln
(

1 − e−k/T
)

= π2T 4

90
. (2.45)

This is derived in Appendix A.1 within thermal field theory, see Eq. (A.37). Analo-
gously, a single fermionic degree of freedom gives [see Eq. (A.72) of Appendix A.2]

Pfermion � T
∫

d3k
(2π)3

ln
(

1 + e−k/T
)

= 7

8

π2T 4

90
. (2.46)
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Therefore, since there are three types of pions, their pressure is

Pπ = 3
π2T 4

90
. (2.47)

This is a simple approximation for the pressure of the confined phase. In the decon-
fined phase, the degrees of freedom are gluons (8 × 2) and quarks (4Nc N f = 24).
Thus with 2 × 8 + 7/8 × 24 = 37 we have

Pq,g = 37
π2T 4

90
− B , (2.48)

where the bag constant B has been subtracted for the following reason. If B were
zero, the deconfined phase would have the larger pressure and thus would be pre-
ferred for all temperatures. We know however, that at sufficiently small tempera-
tures, the confined phase (that’s the world we live in) must be preferred. This is
phenomenologically accounted for by the bag constant B which acts like an energy
penalty for the deconfined phase. Without this penalty, at least in this very sim-
ply model description, the deconfined phase would be “too favorable” compared to
what we observe. As a consequence, by including the bag constant there is certain
critical temperature Tc below which the confined phase is preferred, Pπ > Pq,g ,
and above which the deconfined phase is preferred, Pq,g > Pπ . This is indeed what
one expects from QCD, where the deconfinement transition temperature is expected
to be Tc � 170 MeV. (As can be seen in the QCD phase diagram in Fig. 1.1, this
deconfinement transition is rather a crossover than a phase transition in the strict
sense.)

In the context of compact stars we are not interested in such large temperatures.
In this case, the chemical potential is large and the temperature practically zero.
Nevertheless we compare nuclear (confined) with quark (deconfined) matter and
thus have to include the bag constant in the pressure and the free energy of quark
matter,

P + B =
∑

f

P f , (2.49a)

ε =
∑

f

ε f + B . (2.49b)

This phenomenological model of confinement is called the bag model [5, 6] because
the quarks are imagined to be confined in a bag. One can view the microscopic
pressure

∑
f P f of the quarks to be counterbalanced by the pressure of the bag B

and an external pressure P .
Equipped with the bag model, we can now explain the strange quark mat-

ter hypothesis. For simplicity we consider massless quarks. A nonzero strange
quark mass will slightly change the results but is not important for the qualitative
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argument. We will also ignore electrons. They are not present in three-flavor mass-
less quark matter at zero temperature. They are however required in two-flavor quark
matter to achieve electric neutrality. But also in this case their population is small
enough to render their effect unimportant for the following argument.

With m f = 0 we simply have

n f = μ3
f

π2
, ε f = 3μ4

f

4π2
, Pf = μ4

f

4π2
, (2.50)

which in particular implies

Pf = ε f

3
. (2.51)

For the strange quark matter hypothesis we consider the energy E per nucleon num-
ber A,

E

A
= ε

nB
, (2.52)

where nB is the baryon number density, given in terms of the quark number densi-
ties as

nB = 1

3

∑
f

n f , (2.53)

because a baryon contains Nc = 3 quarks. At zero pressure, P = 0, Eqs. (2.49) and
(2.51) imply ε = 4B and thus

E

A
= 4B

nB
. (2.54)

We now apply this formula first to three-flavor quark matter (“strange quark mat-
ter”), then to two-flavor quark matter of only up and down quarks. For strange quark
matter, the neutrality constraint (2.43) becomes

2nu − nd − ns = 0 . (2.55)

Together with the conditions from chemical equilibrium (2.42) this implies

μu = μd = μs ≡ μ . (2.56)

We see that strange quark matter is particularly symmetric. The reason is that the
electric charges of an up, down, and strange quark happen to add up to zero. Now
with nB = μ3/π2 and
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B =
∑

f

P f = 3μ4

4π2
(2.57)

(still everything at P = 0) we have

E

A

∣∣∣∣
N f =3

= (4π2)1/4 33/4 B1/4 � 5.714 B1/4 � 829 MeVB1/4
145 . (2.58)

We have expressed B1/4 in units of 145 MeV, B1/4
145 ≡ B1/4/(145 MeV).

For two-flavor quark matter (neglecting the contribution of electrons), the charge
neutrality condition is

nd = 2nu . (2.59)

Hence,

μd = 21/3μu . (2.60)

Then, with nB = μ3
u/π

2 and

B =
∑

f

P f = (1 + 24/3)μ4
u

4π2
, (2.61)

we find

E

A

∣∣∣∣
N f =2

= (4π2)1/4 (1 + 24/3)3/4 B1/4 � 6.441 B1/4 � 934 MeVB1/4
145 . (2.62)

By comparing this to Eq. (2.58) we see that two-flavor quark matter has a larger
energy per baryon number than three-flavor quark matter. This is a direct conse-
quence of the Pauli principle: adding one particle species (and keeping the total
number of particles fixed) means opening a set of new available low-energy states
that can be filled, thus lowering the total energy of the system.

We can now compare the results (2.58) and (2.62) with the energy per nucleon in
nuclear matter. For pure neutron matter, it is simply given by the neutron mass,

E

A

∣∣∣∣
neutrons

= mn = 939.6 MeV . (2.63)

For iron, 56Fe, it is

E

A

∣∣∣∣
56Fe

= 56 m N − 56 · 8.8 MeV

56
= 930 MeV , (2.64)
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with the nucleon mass m N = 938.9 MeV and the binding energy per nucleon in
iron of 8.8 MeV. Since we observe iron rather than deconfined quark matter, we
know that

E

A

∣∣∣∣
56Fe

<
E

A

∣∣∣∣
N f =2

⇒ B1/4 > 144.4 MeV . (2.65)

We have thus found a lower limit for the bag constant from the stability of iron with
respect to two-flavor quark matter. Now what if the bag constant were only slightly
larger than this lower limit? What if it were small enough for three-flavor quark
matter to have lower energy than iron? The condition for this would be

E

A

∣∣∣∣
N f =3

<
E

A

∣∣∣∣
56Fe

⇒ B1/4 < 162.8 MeV . (2.66)

This would imply that strange quark matter is absolutely stable (stable at P = 0),
while nuclear matter is metastable. This possibility, which would be realized by a
bag constant in the window 145 MeV < B1/4 < 162 MeV, is called strange quark
matter hypothesis, suggested by Bodmer [7] and Witten [8], see also [9].

Note that the existence of ordinary nuclei does not rule out the strange quark
matter hypothesis. The conversion of an ordinary nucleus into strange quark matter
requires the simultaneous conversion of many (roughly speaking A many) u and
d quarks into s quarks. Since this has to happen via the weak interaction, it is
practically impossible. In other words, there is a huge energy barrier between the
metastable (if the hypothesis is true) state of nuclear matter and absolutely stable
strange quark matter. This means that strange quark matter has to be created in
another way (“going around” the barrier), by directly forming a quark-gluon plasma.
This can for instance happen in a heavy-ion collision. Or, more importantly in our
context, it may happen in the universe, giving rise to stars made entirely out of quark
matter, so-called strange stars.

Small “nuggets” of strange quark matter are called strangelets (a strange star
would then in some sense simply be a huge strangelet). If a strangelet is injected
into an ordinary compact star (a neutron star), it would, assuming the strange quark
matter hypothesis to be true, be able to “eat up” the nuclear matter, converting the
neutron star into a strange star. Note the difference between this transition and the
above described impossible transition from ordinary nuclear matter to strange quark
matter: once there is a sufficiently large absolutely stable strangelet, successive con-
version of up and down quarks into strange quarks increase the size of the strangelet;
the energy barrier originating from the simultaneous creation of a large number of
strange quarks now cannot cause the system to relax back into its original nuclear
(metastable) state. This argument has important consequences. If there exist enough
sizable strangelets in the universe to hit neutron stars, every neutron star would be
converted into a strange star. In other words, the observation of a single ordinary
neutron star would rule out the strange quark matter hypothesis. Therefore, it is
important to understand whether there are enough strangelets around. It has been
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discussed recently in the literature that there may not be enough strangelets [10], in
contrast to what was assumed before.

2.2.2 Equation of State

Next we derive the equation of state for strange quark matter. We include the effect
of the strange quark mass to lowest order and also include electrons. It is convenient
to express the quark chemical potentials in terms of an average quark chemical
potential μ = (μu + μd + μs)/3 and the electron chemical potential μe,

μu = μ − 2

3
μe , (2.67a)

μd = μ + 1

3
μe , (2.67b)

μs = μ + 1

3
μe . (2.67c)

Written in this form, the conditions from β-equilibrium (2.42) are automatically
fulfilled. Taking into account the strange quark mass, the Fermi momenta for the
approximately massless up and down quark and the massive strange quark are
given by

kF,u = μu , (2.68a)

kF,d = μd , (2.68b)

kF,s =
√
μ2

s − m2
s . (2.68c)

The energy density and the pressure are

∑
i=u,d,s,e

εi = 3μ4
u

4π2
+ 3μ4

d

4π2
+ 3

π2

∫ kF,s

0
dk k2

√
k2 + m2

s + μ4
e

4π2
, (2.69a)

∑
i=u,d,s,e

Pi = μ4
u

4π2
+ μ4

d

4π2
+ 3

π2

∫ kF,s

0
dk k2

(
μs −

√
k2 + m2

s

)
+ μ4

e

12π2
,

(2.69b)

where we have neglected the electron mass. The neutrality condition can now be
written as

0 = ∂

∂μe

∑
i=u,d,s,e

Pi = −2

3
nu + 1

3
nd + 1

3
ns + ne . (2.70)
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(Note that μe is defined as the chemical potential for negative electric charge.) Solv-
ing this equation to lowest order in the strange quark mass yields

μe � m2
s

4μ
. (2.71)

Consequently, the quark Fermi momenta become

kF,u � μ − m2
s

6μ
, (2.72a)

kF,d � μ + m2
s

12μ
, (2.72b)

kF,s � μ − 5m2
s

12μ
. (2.72c)

We see that the Fermi momenta are split by an equal distance of m2
s/(4μ), and

kF,s < kF,u < kF,d , see Fig. 2.1. The splitting and the order of the Fermi momenta
can be understood from the following physical picture: start from the symmetric
situation ms = μe = 0. In this case, all quark flavors fill their Fermi spheres to
a common Fermi momentum given by μ, and the system is neutral. Now switch
on the strange quark mass. This lowers the Fermi momentum of the strange quark
according to Eq. (2.68c). Consequently, there are fewer strange quarks in the system
and thus there is a lack of negative charge. To counterbalance this missing negative
charge, the system responds by switching on a chemical potential μe. Because of
β-equilibrium, the Fermi momenta of all quark flavors are rigidly coupled to this
change. Electric neutrality is regained by lowering the up quark Fermi momentum
and raising the down and strange quark Fermi momenta (which makes for the catchy
phrase “the Fermi momentum of the down goes up”). Since the strange quark Fermi
momentum was already lowered by the finite mass, it is clear that the resulting order

Fig. 2.1 Illustration of the
Fermi momenta for neutral,
unpaired quark matter in
β-equilibrium with quark
chemical potential μ. The
splitting of the Fermi
momenta is due to the strange
quark mass ms which is
assumed to be small
compared to μ

ms
4μ

2

d

kF

su

μ
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is kF,s < kF,u < kF,d . The electron contribution to the negative charge density is
negligibly low, ne ∝ μ3

e ∝ m6
s/μ

3, while the contribution of the quarks due to the
strange quark mass is proportional to μm2

s . The splitting of the Fermi momenta due
to the effects of the strange quark mass, β-equilibrium, and electric neutrality is
very important in the context of color superconductivity. Since color superconduc-
tivity is usually based on Cooper pairing of quarks of different flavor, a mismatch
in Fermi surfaces tends to disfavor this pairing. We shall discuss superconductivity
in quark and nuclear matter in Chap. 4 and give a brief qualitative discussion of the
consequences of Fermi surface splitting for color superconductivity at the end of
that chapter.

Here we continue with unpaired quark matter and insert the result for μe (2.71)
back into the energy density and the pressure. Again keeping only terms to lowest
order in the strange quark mass yields

∑
i

εi � 9μ4

4π2
− 3μ2m2

s

4π2
, (2.73a)

∑
i

Pi � 3μ4

4π2
− 3μ2m2

s

4π2
. (2.73b)

Consequently,

∑
i

εi � 3
∑

i

Pi + 3μ2m2
s

2π2
. (2.74)

With Eq. (2.49a) the pressure, including the bag constant, becomes

P � 3μ4

4π2
− 3μ2m2

s

4π2
− B , (2.75)

and, expressing P in terms of the energy density, we obtain with the help of
Eq. (2.49b)

P � ε − 4B

3
− μ2m2

s

2π2
. (2.76)

This is the equation of state of noninteracting, unpaired strange quark matter within
the bag model with strange quark mass corrections to lowest order.

2.3 Mass-Radius Relation Including Interactions

Let us briefly discuss the results for the mass-radius relation of a compact star for
given equations of state for nuclear and quark matter. Since the underlying calcula-
tions in general are complicated and have to be done on a computer, we only quote
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some results to illustrate the physical conclusions. So far we have only discussed
the simplest cases of noninteracting matter. Interactions have a significant effect on
both the equation of state and the mass-radius relation. We now discuss these effects
briefly, only in the subsequent chapters shall we study the nature and details of these
interactions (and discuss their relevance to other observables than the mass and the
radius of the star).

The maximum mass of a star for noninteracting nuclear matter is ∼ 0.7M� (see
for instance Ref. [4] or solve Problem 2.2); including interactions increases the mass
to values well above 2M�. The significance of the equation of state and interac-
tions for the maximum mass is easy to understand: if the pressure P(ε) for a given
energy density ε is large, the system is able to sustain a large gravitational force
that seeks to compress it. Comparing two equations of state over a given energy
density range, the one with the larger pressure (for all energy densities in the given
range) is thus termed stiff, the one with the smaller pressure is termed soft. Soft
equations of state can sustain less gravitational force and thus lead to stars with
lower maximum masses. In the case of noninteracting nuclear matter, it is only the
Fermi pressure from the Pauli exclusion principle that prevents the star from the
collapse. Interactions increase this pressure because the dominant effect in the case
of nuclear matter at the relevant densities is the short-range repulsion between the
nucleons. Therefore, the maximum mass is significantly larger in this case.

In Figs. 2.2 and 2.3 several models for the nuclear equation of state are applied
to obtain maximum masses up to 2.4 M�. For the case of quark matter, we can
understand some of the corrections through interactions in the following simple
way. A generalization of the pressure (2.75) is

P = 3μ4

4π2
(1 − c) − 3μ2

4π2
(m2

s − 4Δ2) − B . (2.77)

This equation contains two corrections compared to Eq. (2.75). One is included in
the coefficient c and originates from the (leading order) correction of the Fermi
momentum due to the QCD coupling αs ,

kF = μ

(
1 − 2αs

3π

)
, (2.78)

resulting in a correction of the μ4 term in the pressure with c = 2αs/π . (This
modification of the Fermi momentum will also become important in the context of
neutrino emissivity in Chap. 5.) Higher order calculations suggest c � 0.3 at den-
sities relevant for compact stars. However, the exact value of c is unknown because
perturbative calculations are not valid in the relevant density regime, cf. discussion
in Sect. 1.1. Therefore, c can only be treated as a parameter with values around
0.3, as done for example in Fig. 2.2. To get an idea about perturbative calculations
beyond leading order in αs , you may consult the recent Ref. [11].

The second correction in Eq. (2.77) is the quantity Δ. This is the energy gap aris-
ing from color superconductivity whose microscopic origin we discuss in Chap. 4. It
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Fig. 2.2 Mass-radius plot from Ref. [12] which shows the dependence of the mass-radius curve
on the (uncertain) parameters of the quark matter equation of state in a hybrid star. We see that
reasonable choices of the parameters lead to similar curves as for nuclear matter (here with the
APR equation of state). In this plot, the transition density ρc (in units of the nuclear ground state
density n0) between quark matter and nuclear matter has been used as a parameter, rather than
the bag constant. From our discussion it is clear that one can be translated into the other. The
coefficient c describes QCD corrections to the quark Fermi momentum and thus to the μ4 term in
the pressure, see Eq. (2.77)
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Fig. 2.3 Mass-radius plot from Ref. [13]. A comparison of a neutron star, different hybrid stars,
and a quark star is shown, using several nuclear equations of state (DBHF, APR, HHJ) and several
quark phases (CFL, 2SC). For more details and explanations of the various abbreviations, see
Ref. [13]
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gives a correction to the μ2 term in the pressure. One might think that this correction
is negligible compared to the μ4 term and the bag constant. However, it turns out
that for reasonable values of the bag constant these two terms largely cancel each
other and the μ2 term becomes important. However, the effect of superconductivity
is still hard to determine. Firstly, it would require a precise knowledge of the strange
quark mass. Secondly, it turns out that the maximum mass of a hybrid star is not very
sensitive to the value of m2

s − 4Δ2 [12].
As a result of this discussion and the results in Figs. 2.2 and 2.3, two points

are important for the further contents of these lectures. Firstly, we should now be
motivated to learn more about the nature and the consequences of interactions in
nuclear and quark matter. Secondly, we have learned that, given our ignorance of the
precise quantitative effects of the strong interaction and the uncertainty in astrophys-
ical observations, the mass and the radius of the star are not sufficient to distinguish
between a neutron star, a hybrid star, and possibly a quark star. Therefore, we also
have to take into account other observables which are linked to the microscopic
physics. While the equation of state is a bulk property, i.e., it is determined by
the whole Fermi sea, there are other phenomena which are only sensitive to the
low-energy excitations at the Fermi surface. One class of such phenomena is given
by transport properties. They can possibly be related to observables which are more
restrictive than mass and radius for the question of the matter composition of the
star. We shall discuss such observables in Chap. 5 where we relate the cooling of
the star to neutrino emissivity, and in Chap. 6 where we qualitatively discuss other
such observables.

Problems

2.1 Equation of state for noninteracting nuclear matter
Find the full equation of state for noninteracting n, p, e matter at T = 0 numerically
by plotting P versus ε. You should see the onset of neutrons and identify a region
where the equation of state is well approximated by the power-law behavior of pure
neutron matter in the nonrelativistic limit, Eq. (2.36).

2.2 Mass-radius relation

(a) Solve Eqs. (2.38) numerically (for nonrelativistic pure neutron matter, i.e., γ =
5/3) and plot m(r), P(r) for a given value of the pressure P0 = P(r = 0).

(b) Use P0 as a parameter to find the mass-radius relation M(R). To this end, you
need to do (a) for several values of P0 and find for each P0 the radius R at which
P(R) = 0 and the corresponding mass M(R).

(c) You may incorporate general relativistic effects from the TOV equation (2.10)
and/or the full (numerical) equation of state for noninteracting nuclear matter
from Problem 2.1.
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Chapter 3
Basic Models and Properties of Dense
Nuclear Matter

There are numerous models to describe cold and dense interacting nuclear matter.
Some of them have been used to obtain the curves in Figs. 2.2 and 2.3. From these
curves we see that the models may differ significantly in their predictions of the
properties of neutron stars and hybrid stars. The reason is that they all are extrapo-
lated into a regime where there is little theoretical control. In other words, for densi-
ties below the nuclear ground state density there are experimental data for instance
from atomic nuclei or neutron scattering which serve to fit the parameters of the
nuclear models unambiguously. However, it is very challenging to construct a model
which reliably predicts the properties of nuclear matter for larger densities. Put
another way, currently the only “experiments” in this density regime are astrophysi-
cal observations which themselves are naturally less controlled than experiments in
the laboratory. Therefore, the state of the art in describing interacting nuclear matter
at high densities is a competition between several models which all are prone to
uncertainties. In these lectures we do not attempt to give an overview over these
models. We rather focus on two basic models and discuss them in detail. The first
is the Walecka model and its extensions. The second is chiral perturbation theory,
which is an effective model based on chiral symmetry of QCD and spontaneous
breaking thereof in nuclear matter. We shall use it to discuss kaon condensation in
nuclear matter.

To put the following in the perspective of understanding QCD, we should keep
in mind that nucleons are ultimately built of quarks and gluons which are the fun-
damental degrees of freedom of the strong interactions. It is a highly nontrivial task
to describe even the mass of a nucleon from quarks and gluons, let alone nuclear
interactions. An important tool for such a case is an effective theory which has
non-fundamental degrees of freedom, baryons and mesons instead of quarks and
gluons. An effective theory can in principle be obtained by taking the low-energy
limit of the underlying fundamental theory, in this case QCD. However, this proce-
dure may turn out to be very difficult. Therefore, one tries to “guess” an effective
theory, for instance guided by symmetry principles. One obtains a theory with some
unknown parameters which have to be fit, for instance to experimental results. Once
the parameters are fitted, one may extrapolate the theory beyond the regime where
the fit has been done. In our case, this will be the high-density region for which

Schmitt, A.: Basic Models and Properties of Dense Nuclear Matter. Lect. Notes Phys. 811, 29–59
(2010)
DOI 10.1007/978-3-642-12866-0_3 c© Springer-Verlag Berlin Heidelberg 2010
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we have no experiments in the laboratory. There is of course no guarantee that this
extrapolation works. Models for interacting nuclear matter at high densities have
to be understood in this spirit. Of course, an upper density limit for the validity
is the deconfinement phase transition to a phase where quarks and gluons are the
relevant degrees of freedom. This limit density is not precisely known but may well
be reached in compact stars.

3.1 The Walecka Model

The Walecka model contains nucleons which interact via the exchange of the scalar
σ meson and the vector ω meson. The Lagrangian is

L = LN + Lσ,ω + LI , (3.1)

Here, the free nucleon Lagrangian is

LN = ψ̄
(

iγ μ∂μ − m N + μγ 0
)
ψ , (3.2)

where ψ̄ ≡ ψ†γ 0, and ψ =
(
ψn

ψp

)
with the neutron and proton spinors ψn

and ψp. For a basic discussion of the field-theoretical treatment of noninteracting
fermions, in particular the roles of finite temperature and chemical potential, see
Appendix A.2. The free mesonic Lagrangian is

Lσ,ω = 1

2

(
∂μσ∂

μσ − m2
σ σ

2
)

− 1

4
ωμνω

μν + 1

2
m2

ωωμω
μ , (3.3)

where ωμν ≡ ∂μων − ∂νωμ, and the interaction Lagrangian with Yukawa interac-
tions between the nucleons and the mesons is

LI = gσ ψ̄σψ + gωψ̄γ μωμψ . (3.4)

We shall consider isospin-symmetric matter, i.e., the masses and chemical poten-
tials of protons and neutrons are assumed to be identical. In general, μ is a matrix
μ = diag(μn, μp) = diag(μB + μI , μB − μI ) with the baryon and isospin chem-
ical potentials μB and μI . Thus, in other words, we assume the isospin chemical
potential to vanish. We can then simply denote μ ≡ μB = μn = μp. Also the
interactions between the nucleons are assumed to be symmetric, i.e., the nn, pp,
and np interactions are identical. An isospin asymmetry in the interactions can be
included by adding ρ-meson exchange. We will briefly discuss this in Sect. 3.2. Also
kaon condensation induces an asymmetry, discussed in Sect. 3.3.
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The parameters of the model are the masses and the coupling constants. The
masses are

m N = 939 MeV , mω = 783 MeV , mσ = (500 − 600)MeV . (3.5)

The σ meson is in fact a broad resonance and thus we can only approximately assign
a mass to this meson. Below we shall use mσ = 550 MeV. The additional parameters
are the coupling constants gσ , gω. We shall discuss below how they are fixed.

In order to compute the equation of state, we need to consider the partition
function

Z =
∫

Dψ̄DψDσDω exp
∫

X
L , (3.6)

where we abbreviated

∫

X
≡
∫ β

0
dτ
∫

d3x , (3.7)

with the inverse temperature β = 1/T . We shall allow for vacuum expectation val-
ues of the mesons. To this end, we write the meson fields as a sum of the condensate
and fluctuations,

σ → σ̄ + σ , (3.8a)

ωμ → ω̄0δ0μ + ωμ , (3.8b)

as explained in Appendix A.1 for a general bosonic field. Now the simplest approxi-
mation is to neglect the fluctuations. This corresponds to the mean-field approxima-
tion. In this case the interaction between the nucleons and the mesons is simplified
to a mesonic background, or mesonic mean field, which is seen by the nucleons.
We can then simply drop all derivative terms of the mesons. As a consequence,
the meson mean fields merely act as corrections to the nucleon mass and chemical
potential, and we obtain the Lagrangian

L = ψ̄
(
iγ μ∂μ − m∗

N + μ∗γ0
)
ψ − 1

2
m2

σ σ̄
2 + 1

2
m2

ωω̄
2
0 , (3.9)

with

m∗
N ≡ m N − gσ σ̄ , (3.10a)

μ∗ ≡ μ − gωω̄0 . (3.10b)

It is important to keep in mind that the actual chemical potential, associated
with nucleon number, is μ, not μ∗. This becomes important for the correct
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thermodynamic relations, see footnote before Eqs. (3.24). The new effective “chem-
ical potential” μ∗ nevertheless has physical meaning since it determines the Fermi
energy as we shall see below.

The partition function now becomes

Z = e
V
T

(
− 1

2 m2
σ σ̄

2+ 1
2 m2

ωω̄
2
0

) ∫
Dψ̄Dψ exp

∫

X
ψ̄
(
iγ μ∂μ − m∗

N + μ∗γ0
)
ψ . (3.11)

The evaluation of the free fermionic part (with modified mass and chemical poten-
tial) is now straightforward and is done in detail in Appendix A.2. Here we only
repeat the most important steps. One first introduces the Fourier transforms

ψ(X) = 1√
V

∑
K

e−i K ·Xψ(K ) , ψ̄(X) = 1√
V

∑
K

ei K ·X ψ̄(K ) . (3.12)

Our conventions are K = (−iωn,k), X = (−iτ, x), and K · X = k0x0 − k · x =
−(ωnτ + k · x), with the fermionic Matsubara frequencies ωn = (2n + 1)πT . Thus,
after performing the X integral in the exponent one obtains

Z = e
V
T

(
− 1

2 m2
σ σ̄

2+ 1
2 m2

ωω̄
2
0

) ∫
Dψ†Dψ exp

[
−
∑

K

ψ†(K )
G−1(K )

T
ψ(K )

]
,

(3.13)
with the inverse nucleon propagator

G−1(K ) = −γ μKμ − γ0μ
∗ + m∗

N . (3.14)

Now using the standard formula for the functional integral over Grassmann variables
one obtains

Z = e
V
T

(
− 1

2 m2
σ σ̄

2+ 1
2 m2

ωω̄
2
0

)
det

G−1(K )

T
, (3.15)

where the determinant is taken over momentum space, Dirac space, and the (here
trivial) neutron–proton space. Consequently,

ln Z = V

T

(
−1

2
m2

σ σ̄
2 + 1

2
m2

ωω̄
2
0

)

+ 4V
∫

d3k
(2π)3

[
Ek

T
+ ln

(
1 + e−(Ek−μ∗)/T

)
+ ln

(
1 + e−(Ek+μ∗)/T

)]
,

(3.16)

where we have performed the Matsubara sum and taken the thermodynamic limit,
and where we have defined the single-nucleon energy

Ek =
√

k2 + (m∗
N )

2 . (3.17)
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The pressure then becomes

P = T

V
ln Z = −1

2
m2

σ σ̄
2 + 1

2
m2

ωω̄
2
0 + PN , (3.18)

with the nucleon pressure (after subtracting the vacuum part)

PN ≡ 4T
∫

d3k
(2π)3

[
ln
(

1 + e−(Ek−μ∗)/T
)

+ ln
(

1 + e−(Ek+μ∗)/T
)]

. (3.19)

We have thus derived the fermionic pressure already used in Chap. 2, see Eq. (2.16),
from thermal field theory. The factor 4 counts the two spin degrees of freedom and
the two baryon degrees of freedom (proton and neutron). We also have obtained the
contribution of antiparticles, for which μ∗ → −μ∗.

The meson condensates have to be determined by maximizing the pressure. We
obtain

0 = ∂P

∂σ̄
= −m2

σ σ̄ − gσ
∂PN

∂m∗
N
, (3.20a)

0 = ∂P

∂ω̄0
= m2

ωω̄0 − gω
∂PN

∂μ∗ . (3.20b)

In terms of the baryon and scalar densities

nB = 〈ψ†ψ〉 = ∂PN

∂μ
= ∂PN

∂μ∗ = 4
∑
e=±

e
∫

d3k
(2π)3

1

e(Ek−eμ∗)/T + 1
, (3.21a)

ns = 〈ψ̄ψ〉 = − ∂PN

∂m∗
N

= 4
∑
e=±

∫
d3k
(2π)3

m∗
N

Ek

1

e(Ek−eμ∗)/T + 1
, (3.21b)

we can write the equations for the condensates (3.20) as

σ̄ = gσ
m2

σ

ns , (3.22a)

ω̄0 = gω
m2

ω

nB . (3.22b)

It is useful to rewrite the first of these equations as an equation for the corrected
mass m∗

N rather than for the condensate σ̄ ,

m∗
N = m N − g2

σ

m2
σ

ns , (3.23)

where we have used Eq. (3.10a). We now take the zero-temperature limit, T�mN ,μ,
which is justified since the temperatures of interest are at most of the order of
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10 MeV, while the baryon chemical potentials are above 1 GeV. The Fermi distri-
bution function then becomes a step function. In particular, all antiparticle contribu-
tions vanish. We obtain1

P = 1

2

g2
ω

m2
ω

n2
B − 1

2

g2
σ

m2
σ

n2
s

+ 1

4π2

[(
2

3
k3

F − (m∗
N )

2kF

)
E∗

F + (m∗
N )

4 ln
kF + E∗

F

m∗
N

]
, (3.24a)

ε = 1

2

g2
ω

m2
ω

n2
B + 1

2

g2
σ

m2
σ

n2
s

+ 1

4π2

[(
2k3

F + (m∗
N )

2kF

)
E∗

F − (m∗
N )

4 ln
kF + E∗

F

m∗
N

]
, (3.24b)

where we have defined the Fermi energy

E∗
F = μ∗ =

√
k2

F + (m∗
N )

2 , (3.25)

and where the zero-temperature densities are

nB = 2k3
F

3π2
, (3.26a)

ns = m∗
N

π2

[
kF E∗

F − (m∗
N )

2 ln
kF + E∗

F

m∗
N

]
. (3.26b)

Pressure and energy density in Eqs. (3.24) define the equation of state which has to
be determined numerically. We may discuss the limits of small (kF → 0) and large

1 One has to be careful with the thermodynamic relations in deriving the energy density (3.24b):
remember that the actual chemical potential associated with baryon number nB is μ, not μ∗. This
means that the pressure at zero temperature can be written as P = −ε +μnB . The last term of the
pressure (term in square brackets on the right-hand side of Eq. (3.24a)) comes from a term of the
structure −ε0 +μ∗nB , cf. for instance Eq. (2.18). With μ∗ = μ− gωω̄0 and the expression for ω̄0
in Eq. (3.22) we can write this as

P = −ε0 + μ∗nB + 1

2

g2
ω

m2
ω

n2
B − 1

2

g2
σ

m2
σ

n2
s

= −
(
ε0 + 1

2

g2
ω

m2
ω

n2
B + 1

2

g2
σ

m2
σ

n2
s

)
+ μnB . (3.27)

From this we can read off the energy density

ε = ε0 + 1

2

g2
ω

m2
ω

n2
B + 1

2

g2
σ

m2
σ

n2
s , (3.28)

which yields Eq. (3.24b).
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(kF → ∞) density analytically. For small density we find

ns � 2k3
F

3π2
= nB , (3.29)

neglecting terms of the order of k5
F/(m

∗
N )

2 � k3
F and higher. Therefore, from

Eq. (3.23) we conclude

m∗
N � m N , (3.30)

where we have suppressed terms of the order of k3
F/m2

σ � m N . The pressure and
the energy density are, within this small-density approximation, dominated by the
nucleonic pressure PN ,

P � 2k5
F

15π2m N
, ε � 2m N k3

F

3π2
. (3.31)

Comparing with Eqs. (2.35) we see that we have exactly reproduced the noninteract-
ing limit. This is no surprise because the only effect of the interactions in the present
approach is the modification of μ and m N . In the small-density limit these effects
are negligible and we are back to the noninteracting result, where the equation of
state has the form P ∝ ε5/3.

For large kF , on the other hand, we have

ns � m∗
N k2

F

π2
, (3.32)

and thus

m∗
N � m N

1 + g2
σ k2

F
m2

σ π
2

. (3.33)

We see that the effective nucleon mass goes to zero for large densities. For general
values of the Fermi momentum, the effective mass has to be computed numerically
from Eqs. (3.23) and (3.26b), see Fig. 3.1.

At large densities, the nucleonic pressure PN as well as the pressure from the
scalar meson (which is proportional to n2

s/m2
σ ) behave like k4

F . Therefore, the total
pressure is dominated by the vector meson contribution which is proportional to
n2

B/m2
ω and thus behaves like k6

F ,

P � ε � 1

2

g2
ω

m2
ω

n2
B . (3.34)
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Fig. 3.1 Density-dependent effective nucleon mass m∗
N at T = 0 in the Walecka model in units

of the zero-density mass m N and as a function of the baryon density nB . Solid line: full numerical
result. Dashed line: high-density approximation from Eq. (3.33)

Consequently, the speed of sound approaches the speed of light at large densities,

c2
s ≡ ∂P

∂ε
� 1 . (3.35)

So far, our model cannot be used quantitatively since we have not yet fixed the nume-
rical values of the coupling constants. To do so one requires the model to reproduce
the saturation density n0 and the binding energy per nucleon at saturation E0,

n0 = 0.153 fm−3 , E0 ≡
(

ε

nB
− m N

)

nB=n0

= −16.3 MeV . (3.36)

Note the difference between the binding energy of infinite, symmetric nuclear matter
without Coulomb effects and the binding energy of realistic nuclei. The latter is
−8.8 MeV for iron, see Eq. (3.64).

We leave it as an exercise to compute the coupling constants from the values
(3.36), see Problem 3.1. One obtains g2

ω/(4π) = 14.717 and g2
σ /(4π) = 9.537. The

result for the density-dependent binding energy with these values for the coupling
constants is shown in Fig. 3.2. This figure shows that there is a finite density n0
where the binding energy is minimal. This is a basic feature of nuclear matter which
has to be reproduced by any physically meaningful model, reflecting the properties
of the nuclear forces. It says in particular that if you add nucleons to a large nucleus
the density will stay approximately constant because there is a preferred distance
between the nucleons that minimizes the energy. We have implicitly made use of
this fact in our estimate of the nucleon number in a neutron star at the beginning of
Chap. 2. In the limit of infinite symmetric nuclear matter and ignoring the Coulomb
forces, this density at which the binding energy is minimal is n0 = 0.153 fm−3. It
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Fig. 3.2 Binding energy per nucleon at zero temperature in the Walecka model as a function of
baryon density, obtained from computing the energy density with the density-modified nucleon
mass. The binding energy has a minimum at which the pressure P is zero, i.e., at this point nuclear
matter is self-bound, and the corresponding density is called saturation density. The two parameters
of the model, namely the coupling constants gσ and gω, are fixed such that the binding energy per
nucleon is E0 = −16.3 MeV at the saturation density n0 = 0.153 fm−3

is called saturation density. At the saturation density nuclear matter is self-bound,
i.e., it is stable at zero pressure. We have indicated in Fig. 3.2 that the minimum of
the binding energy divides the stable density regime with positive pressure from the
unstable regime with negative pressure. The behavior of the pressure follows from
the thermodynamic relation P = − ∂E

∂V , where E = εV is the energy and V the
volume, which implies

P = n2
B
∂(ε/nB)

∂nB
. (3.37)

Consequently, at the minimum of ε/nB as a function of nB the system has zero
pressure. Moreover, we see that a decrease in the binding energy per baryon number
upon increasing the baryon number leads to a negative pressure. (At very small den-
sities, barely visible in the plot, the energy also increases with density, i.e., P > 0.
This is the regime where the nucleons are too far apart to feel their attraction; the
increasing energy is then a consequence of the increasing kinetic energy.)

In our context of compact stars, the self-boundedness of nuclear matter implies
that nuclear matter can exist at the surface of the star where the pressure vanishes. In
the interior, the gravitational pressure compresses the matter to densities larger than
n0. As we see from the figure, this compressed matter, in turn, has itself positive
pressure to counterbalance the pressure from gravity. This is the reason why the
high-density part of the curve in Fig. 3.2 is relevant for astrophysical applications.
We shall see in the next subsection why the Walecka model in the simple form
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discussed here cannot be trusted for densities much larger than n0 and how the
model can be improved to yield predictions for the high-density regime.

3.1.1 Including Scalar Interactions

The Walecka model accommodates important aspects of nuclear matter such as the
existence of a saturation density whose realistic value is reproduced upon fitting
the parameters of the model. We have already discussed on general grounds that
extrapolations to high densities are uncontrolled, and thus the Walecka model (and
all similar models of this kind) have to be improved in an interplay with experimen-
tal observations, for example astrophysical data. But there is even a more obvious
shortcoming of the simple version of the Walecka model discussed so far. Even at
the saturation density it fails in its prediction for the incompressibility of nuclear
matter which is defined as

K ≡ k2
F
∂2(ε/nB)

∂k2
F

. (3.38)

This quantity is a measure for the stiffness of nuclear matter. In some literature,
K is also called compression modulus or, somewhat misleadingly, “compressibil-
ity”. To see that a large value of K corresponds to “stiff” matter, start from the usual
thermodynamic definition for the compressibility χ ,

1

χ
= nB

∂P

∂nB
= n2

B
∂2ε

∂n2
B

. (3.39)

This definition says that easily compressible (“soft”) matter has a small change in
pressure upon changing the density. For the second equality we have used Eq. (3.37).

On the other hand, from the definition (3.38) we obtain

K = k2
F
∂2(ε/nB)

∂n2
B

(
∂nB

∂kF

)2

= 9n2
B
∂2(ε/nB)

∂n2
B

= 9nB
∂2ε

∂n2
B

+ 18

(
ε

nB
− ∂ε

∂nB

)
, (3.40)

where ∂nB/∂kF = 3nB/kF [see Eq. (3.26a)] has been used. Now recall that in
equilibrium, i.e., at the saturation density where the pressure vanishes, ε/nB as a
function of nB has a minimum,

0 = ∂(ε/nB)

∂nB

∣∣∣∣
nB=n0

= − 1

nB

(
ε

nB
− ∂ε

∂nB

)

nB=n0

. (3.41)
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Consequently, the second term on the right-hand side of Eq. (3.40) vanishes at
nB = n0 and the relation between χ and K becomes at saturation

1

χ
= n0 K

9
, (3.42)

i.e., a large compressibility χ corresponds to a small incompressibility K , as it
should be.

The calculation of the incompressibility in the given model yields K � 560 MeV.
This is more than twice as much as the experimentally inferred value. Also the
nucleon mass itself can be determined experimentally and compared to the pre-
diction of the model. In total, there are thus four values which the model should
reproduce. To improve the model, we add cubic and quartic scalar self-interactions
of the form

LI,σ = −b

3
m N (gσ σ )

3 − c

4
(gσ σ )

4 (3.43)

to the Lagrangian (3.1). Besides the phenomenological need of these terms, there is
also a theoretical reason for their presence: the model becomes renormalizable. With
the self-interactions we have introduced two new dimensionless constants b and c
which can be used, together with the two couplings gσ , gω to fit four experimental
values. Namely, the two from Eq. (3.36) plus the incompressibility and the Landau
mass

K � 250 MeV , mL = 0.83 m N . (3.44)

The Landau mass is defined as

mL = kF

vF
, (3.45)

where

vF = ∂Ek

∂k

∣∣∣∣
k=kF

(3.46)

is the Fermi velocity. It is plausible that the Landau mass is experimentally more
accessible than the mass parameter m∗

N since it is an effective mass for fermions at
the Fermi surface where all low-energy excitations are located.

In the mean field approximation, it is easy to include the effect of the scalar
self-interactions. The pressure becomes

P = −1

2
m2

σ σ̄
2 − b

3
m N (gσ σ̄ )

3 − c

4
(gσ σ̄ )

4 + 1

2
m2

ωω̄
2
0 + PN , (3.47)

with PN defined in Eq. (3.19). The implicit equation for the effective nucleon mass
(3.23) now receives contributions from the additional terms and becomes
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m∗
N = m N − g2

σ

m2
σ

ns + g2
σ

m2
σ

[
bm N (m N − m∗

N )
2 + c(m N − m∗

N )
3
]
. (3.48)

To fit the four above mentioned values, one has to choose g2
σ /(4π) = 6.003,

g2
ω/(4π) = 5.948, b = 7.950·10−3, and c = 6.952·10−4. The numerical evaluation

of the binding energy is left as an exercise. The result is plotted in Fig. 3.3 and shows
that the behavior at large densities has changed significantly compared to the case
without scalar interactions. In particular, the lower value of the incompressibility
goes along with a softer equation of state at large densities. In other words, if you
choose a fixed binding energy on the vertical axis you find a larger baryon density
after taking into account the scalar interactions. The matter has thus become easier to
compress in the high-density regime, in accordance with a lower incompressibility.
(See also discussion about stiff and soft equations of state in Sect. 2.3.)
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Fig. 3.3 Binding energy per nucleon as a function of density in the Walecka model, including cubic
and quartic scalar self-interactions (solid line). The four parameters of the model are fixed to the
saturation density, the binding energy per nucleon at the saturation density, the incompressibility,
and the Landau mass. For comparison, the dashed line shows the result from Fig. 3.2, i.e., without
scalar interactions. The scalar interactions account for a much softer equation of state

3.2 Hyperons

In the interior of a compact star, densities can be as high as several times nuclear sat-
uration density. Therefore, baryons with strangeness, hyperons, may occur (as well
as muons). The lightest of these states are given by the baryon octet, see Table 3.1.
It is rather straightforward to incorporate hyperons in the kind of model discussed
above. Of course, the evaluation becomes more laborious, and the model has many
more parameters. Let us therefore briefly discuss the model with the hyperon octet
without going into too much detail.
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Table 3.1 Mass, isospin, electric charge, strangeness, spin, and quark content for the spin-1/2
baryon octet

p n Λ Σ+ Σ0 Σ− Ξ0 Ξ −

m (MeV) 939 1115 1190 1315
I3 1/2 −1/2 0 1 0 − 1 1/2 − 1/ 2
Q 1 0 0 1 0 − 1 0 − 1
S 0 − 1 − 2
J 1/2

quark content uud udd uds uus uds dds uss dss

The interaction between the baryons is now extended by interactions mediated
by the φ and ρ vector mesons. (The φ meson has quark content s̄s; the ρ meson has
the same quark content as a pion, i.e., it can be considered as an excited state of the
pion.) The Lagrangian is

L=
∑

j

ψ̄j
(
iγ μ∂μ − mj + μjγ0 + gσ jσ − gω jγ

μωμ − gφ jγ
μφμ − gρ jγ

μρa
μτa
)
ψj

+ 1

2

(
∂μσ∂μσ − m2

σ σ
2
)

− b

3
m N (gσ σ )

3 − c

4
(gσ σ )

4

− 1

4
ωμνωμν + 1

2
m2

ωω
μωμ

− 1

4
φμνφμν + 1

2
m2

φφ
μφμ

− 1

4
ρμν

a ρa
μν + 1

2
m2

ρρ
μ
a ρ

a
μ . (3.49)

Here, j runs over all eight baryons and τa are the isospin generators. In a compact
star, we have to require chemical equilibrium with respect to the weak interactions.
In the case of hyperons, the conditions are

μp = μn − μe , μΛ = μn (3.50a)

μΣ+ = μn − μe , μΣ0 = μn (3.50b)

μΣ− = μn + μe , μΞ0 = μn (3.50c)

μΞ− = μn + μe , (3.50d)

and, including muons, μe = μμ. The conditions (3.50) all come from weak pro-
cesses which we have already discussed, see Eqs. (2.40). For example the process
n → Σ+ + e + ν̄e, which gives rise to the condition μΣ+ = μn − μe, can be
understood from the elementary processes as

u + e → s + νe

d → u + e + ν̄e

d → u + e + ν̄e

⎫⎬
⎭ udd → uus + e + ν̄e . (3.51)
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Fig. 3.4 Density fractions of baryons and leptons (and quarks, for a bag constant B =
250 MeV/fm−3) as a function of the baryon number density. The figure is taken from Ref. [1]
where more details about the underlying calculation can be found. For sufficiently large densities,
hyperons and muons appear, and at densities of a few times nuclear ground state densities their
density fractions becomes comparable to the fractions of nucleons and electrons. There is a region
of coexistence of deconfined quark matter and baryonic matter, see Sect. 3.4 for a discussion of
these mixed phases. The curves shown here depend on the chosen models for nuclear and quark
matter and the value of the bag constant

Electric neutrality is given by the constraint

n p + nΣ+ = ne + nμ + nΣ− + nΞ− . (3.52)

We show the result of baryon and lepton density fractions in a model similar to the
one discussed here in Fig. 3.4.

As a result of this rough discussion and the curves in the figure we learn
that hyperons can be included in a rather straightforward extension of the sim-
ple Walecka model and that hyperons do appear for sufficiently large densities.
The physical reasons are that (i) they can appear because the baryon chemi-
cal potential is large enough to provide energies larger than their mass, (ii) they
do appear because (a) the systems seeks to acquire neutrality and does so with
electrons at low densities; if hyperons are available, electrons in high-energy
states can be replaced by hyperons in low-energy states and (b) the system seeks
to become isospin symmetric; at low densities it is highly isospin asymmetric,
and hyperons with nonzero isospin number provide a means to symmetrize the
system.
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3.3 Kaon Condensation

Another possible variant of dense nuclear matter, besides the occurrence of hyper-
ons, is the condensation of mesons. Originally, pion condensation was suggested
[2]. Only many years later, it was realized that kaon condensation is possible in
compact stars [3]. This is somewhat surprising since kaons are much heavier than
pions and thus pion condensation seems more likely. However, in the medium, the
effective kaon mass becomes sufficiently small to allow for a kaon condensate.

Kaon condensation is of interest for these lectures for several reasons. Besides
being a variant of dense matter and thus relevant for the physics of compact stars, its
discussion requires the introduction of several important concepts in the theory of
the strong interaction. It is thus also interesting from a fundamental point of view.
Moreover, we shall encounter kaon condensation again later in these lectures, when
we discuss the quark-matter relatives of the kaon, see Sect. 4.2.1.

To explain kaon condensation, we will first have to say what a kaon is and will
do so with the help of chiral symmetry and spontaneous breaking thereof. Then, we
will discuss chiral perturbation theory. This is one possible method to study kaon
condensation and has been used in the original work [3]. For another approach, using
models similar to the above discussed Walecka model, see for instance Ref. [4] and
references therein. The evaluation of the chiral model has to be done numerically, so
we will more or less only be concerned with setting up and understanding the basic
equations. As a modest goal, we will try to understand the onset of kaon condensa-
tion, i.e., we will show how to compute the critical baryon density at which there is
a second-order phase transition to the kaon-condensed phase.

3.3.1 Chiral Symmetry of QCD

Kaon condensation can be discussed in a low-energy effective theory, here chiral
perturbation theory. This theory should describe the fundamental theory, QCD, in
the low-energy limit. In order to construct the theory, we need to understand the
underlying symmetries. The QCD Lagrangian is

LQCD = ψ̄(iγ μDμ + μγ0 − M)ψ + Lgluons , (3.53)

with the quark spinor ψ in color, flavor, and Dirac space, the mass matrix in flavor
space

M =
⎛
⎜⎝

mu 0 0

0 md 0

0 0 ms

⎞
⎟⎠ , (3.54)

and the covariant derivative Dμ = ∂μ − igTa Aa
μ, where Ta = λa/2 (a = 1, . . . 8)

are the generators of the color gauge group SU (3)c with the Gell-Mann matrices
λa , Aa

μ are the corresponding gauge fields, and g is the strong coupling constant.
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The chemical potential μ is a diagonal matrix in flavor space. Without taking into
account the weak interactions, each flavor is conserved and there are three indepen-
dent chemical potentials. We have already seen in the previous sections that after
taking into account weak interactions there are only two chemical potentials, one
for quark (baryon) number, and one for electric charge.

The purely gluonic contribution to the Lagrangian is given by

Lgluons = −1

4
Gμν

a Ga
μν , (3.55)

where Ga
μν = ∂μAa

ν − ∂ν Aa
μ + g f abc Ab

μAc
ν with the SU (3)c structure constants is

the gluon field strength tensor. Here we are not interested in this gluonic part, since
we focus on the transformations of the fermion fields and the resulting symmetries
of the Lagrangian. Also later, when we shall use QCD for explicit calculations,
the gluonic part is negligible because we always work at very small temperatures
compared to the quark (or baryon) chemical potential. The interactions of the quarks
via gluon exchange, included in the covariant derivative, is of course important; in
Sect. 4.3 this interaction will be used on the microscopic level.

We now introduce the chirality projectors

PR = 1 + γ5

2
, PL = 1 − γ5

2
. (3.56)

They obey the identities

P2
R/L = PR/L , P†

R/L = PR/L , PR PL = 0 , PR + PL = 1 , (3.57)

i.e., they form a complete set of orthogonal projectors. (These identities are obvious
with γ 2

5 = 1 and γ
†
5 = γ5.) For a physical picture, remember that, for massless

quarks, chirality eigenstates are also eigenstates of helicity. Therefore, in this case,
there is a one-to-one correspondence between chirality and the projection of the
fermion momentum onto its spin. We define left- and right-handed quark spinors by

ψR/L ≡ PR/Lψ , (3.58)

such that ψ = PRψ + PLψ = ψR + ψL . Then, using

{γ5, γμ} = 0 , (3.59)

we can write the Lagrangian as

LQCD = ψ̄R(iγ
μDμ + μγ0)ψR + ψ̄L(iγ

μDμ + μγ0)ψL

−ψ̄R MψL − ψ̄L MψR + Lgluons . (3.60)
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Let us first discuss the massless case, M = 0. In this case, separate rotations of left-
and right-handed spinors leave the Lagrangian invariant,

ψR → eiφa
RtaψR , ψL → eiφa

L taψL . (3.61)

Since we are interested in three quark flavors, ta are the nine generators of the flavor
group U (3), t0 = 1 and ta = Ta (a = 1, . . . 8). Consequently, the Lagrangian is
invariant under U (3)L × U (3)R . The corresponding Noether currents are

Jμ
a,R/L = ψ̄R/Lγ

μtaψR/L . (3.62)

They can be rewritten in terms of vector and axial-vector currents

Jμ
a,V ≡ Jμ

a,R + Jμ
a,L = ψ̄γ μtaψ , (3.63a)

Jμ
a,A ≡ Jμ

a,R − Jμ
a,L = ψ̄γ μtaγ5ψ . (3.63b)

To see this, note that PRγ5 = PR and PLγ5 = −PL . In QCD the singlet axial-vector
current is in general not conserved,

∂μ Jμ
0,A = −g2 N f

16π2
Ga

μν G̃μν
a , (3.64)

where G̃μν = 1
2ε

μνσρGσρ is the dual field strength tensor. This is referred to as the
axial anomaly. We are left with the symmetry group SU (3)R × SU (3)L × U (1)V .
The vector symmetry U (1)V corresponds to baryon number conservation and is
therefore also denoted as U (1)B . The flavor symmetry group SU (3)R × SU (3)L

is referred to as chiral symmetry. As we can see from Eq. (3.60), nonzero masses
break the chiral symmetry explicitly. They do not break the U (1)V symmetry, and
for the special case mu = md = ms the subgroup SU (3)R+L of simultaneous R and
L rotations remains a symmetry of the Lagrangian.

Spontaneous breaking of chiral symmetry is realized by a chiral condensate of
the form 〈ψ̄LψR〉. This is analogous to spontaneous symmetry breaking in simple
models such as φ4 theory (see for instance the discussion of Bose–Einstein con-
densation in Appendix A.1), or in a superconductor, or in the Higgs mechanism.
The chiral condensate is only invariant under simultaneous right- and left-handed
rotations, i.e., the symmetry breaking pattern is

G ≡ SU (3)R × SU (3)L → H ≡ SU (3)R+L . (3.65)

As a comparison, in φ4 theory with a complex scalar field φ, we have G = U (1),
H = 1, which gives rise to the familiar “Mexican hat” potential with a negative
quadratic and a positive quartic term in |φ|. Spontaneous breaking of a global sym-
metry goes along with massless Goldstone bosons. In the Mexican hat, there is
one massless excitation along the bottom of the Mexican hat, given by the angular
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component of the order parameter (while the radial component corresponds to a
massive mode). Here, the bottom of the Mexican hat is not just a one-dimensional
line. It is rather given by the coset space G/H (which is simply U (1) in φ4 theory).
This space has dim G −dim H generators. Consequently, with dim G = 8+8 = 16
and dim H = 8, there are 8 Goldstone modes. They are described by the SU (3)
matrix

U = eiθaλa/ fπ , (3.66)

with the pion decay constant fπ � 93 MeV. The meson fields θa of the Goldstone
octet are usually reparametrized as

θaλa =

⎛
⎜⎜⎜⎜⎜⎜⎝

π0

√
2

+ η√
6

π+ K +

π− − π0

√
2

+ η√
6

K 0

K − K̄ 0 −
√

2

3
η

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.67)

Since the rows (columns) of this matrix carry left-handed flavor (right-handed anti-
flavor) labels, it is easy to read off the quark content of the various mesons, e.g.,
K + ∼ s̄u, π+ ∼ d̄u etc. According to its chiral structure, the chiral matrix trans-
forms under a transformation g = (gL , gR) ∈ G as

U → gLUg†
R . (3.68)

3.3.2 Chiral Lagrangian

In the (unrealistic) case of vanishing quark masses, the chiral symmetry is an exact
symmetry and the Goldstone bosons are exactly massless. Exploiting the anal-
ogy to the Mexican hat potential, this means that the bottom of the Mexican hat
is truly flat. Quark masses break the chiral symmetry explicitly. However, if the
masses are small compared to the characteristic scale of chiral symmetry breaking
Λ ∼ 4π fπ ∼ 1 GeV we can still consider the chiral symmetry as approximate.
The bottom of the Mexican hat then gets distorted on a scale small compared to the
deepness of the potential, and the Goldstone bosons acquire small masses. In this
case it is more appropriate to speak of pseudo-Goldstone bosons. One might still
hope to describe the system at low energies by an effective theory which is built on
the underlying chiral symmetry, although this symmetry is strictly speaking broken.
The mass matrix M , now nonvanishing, is required to transform just as the chiral
field U , i.e.,

M → gL Mg†
R . (3.69)
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We require the chiral Lagrangian to be invariant under G. The kinetic term and the
mass term of the resulting effective theory are

LU = f 2
π

4
Tr[∂μU∂μU †] + cTr[M†U + MU †] + . . . , (3.70)

where the trace is taken over flavor space. The two constants fπ and c have to be
fitted to experimental values, similarly to the constants of the Walecka model. In
principle, higher order terms in U are allowed but shall be neglected here. Note that
the Goldstone fields themselves appear in the exponent of the field U , i.e., they are
already present to all orders.

In the context of compact stars, we do not only want to describe isolated mesons.
We also need to include baryons and their interactions. The baryon octet fields are
given by the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ0

√
2

+ Λ√
6

Σ+ p

Σ− −Σ0

√
2

+ Λ√
6

n

Ξ− Ξ0 −
√

2

3
Λ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.71)

which includes the proton p, the neutron n, and the hyperons from Table 3.1. A sim-
ple way to understand the structure of this matrix is as follows. Consider the baryons
as composed of a diquark and a quark. The diquarks form an antitriplet, i.e., one can
think of the columns of the matrix as labelled by (ū, d̄, s̄) which corresponds to the
quark content (ds, us, ud). Then the rows are simply labelled by the flavors in the
fundamental representation (u, d, s), and one easily checks that this yields the quark
content of the baryons as given in Table 3.1.

The free baryon Lagrangian is

LB = Tr
[
B̄(iγ μ∂μ − m B)B

]
, (3.72)

where m B � 1.2 GeV is the SU (3)L × SU (3)R symmetric baryon mass. To write
down the interaction between baryons and the mesons it is convenient to decompose
the chiral field into left- and right-handed fields,

U = ξLξ
†
R, (3.73)

where, without loss of generality, we may choose

ξ ≡ ξL = ξ
†
R, (3.74)

such that

U = ξ2 . (3.75)
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We now add the meson-baryon interaction terms [3, 5] (see also chapter 7 of Ref. [6]
for more details),

LI = iTr
[
B̄γμ

[
Jμ

V , B
]]+ D Tr

[
B̄γμγ5{Jμ

A , B}]+ F Tr
[
B̄γμγ5

[
Jμ

A , B
]]

+ a1Tr
[
B†(ξMξ + ξ† M†ξ†)B]+ a2Tr

[
B† B

(
ξMξ + ξ† M†ξ†)]

+ a3Tr
[
B† B

]
Tr
[
Mξ2 + M†(ξ†)2] , (3.76)

with the additional constants D, F , a1, a2, a3, and the vector and axial-vector cur-
rents

Jμ
V = 1

2

(
ξ†∂μξ + ξ∂μξ†

)
, (3.77a)

Jμ
A = i

2

(
ξ†∂μξ − ξ∂μξ†

)
. (3.77b)

The Lagrangian is an expansion in M/Λ and ∂/Λ with the scale of chiral symmetry
breaking Λ. Higher order terms in these parameters are omitted. In summary, we
have the Lagrangian

L = LU + LB + LI . (3.78)

Later we shall also add electron and muon contributions, but they are simple and we
ignore them for now to keep the notation brief.

3.3.3 Kaon-Nucleon Matter

Since we expect (charged) kaon condensation in a compact star rather than any other
meson condensation (possibly there is pion condensation) let us for simplicity drop
all mesons other than the kaons. We can then write

U = ei Q = cos Q + i sin Q , (3.79)

with

Q =
7∑

a=4

φaλa =
⎛
⎜⎝

0 0 φ4 − iφ5

0 0 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 0

⎞
⎟⎠ , (3.80)

where we have absorbed fπ into the fields φa ≡ θa/ fπ such that the φa’s are dimen-
sionless. We can now compute a simple expression for the matrix U . To this end we
first verify by explicit matrix multiplication

Q3 = φ2 Q , (3.81)
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where

φ2 ≡ φ2
4 + φ2

5 + φ2
6 + φ2

7 . (3.82)

From Eq. (3.81) we obtain (for instance via complete induction)

Q2n = φ2(n−1)Q2 , (3.83)

for all n ≥ 1, which can be used to compute

cos Q = 1 −
(

Q2

2! − Q4

4! + . . .

)
= 1 − Q2

(
1

2! − φ2

4! + . . .

)

= 1 − Q2

φ2
(1 − cosφ) , (3.84)

and

sin Q = Q

(
1 − Q2

3! + Q4

5! − . . .

)
= Q

(
1 − Q2

3! + φ2 Q2

5! − . . .

)

= Q − φ2 Q

3! + φ4 Q

5! − . . . = Q

φ
sinφ . (3.85)

As a further simplification let us now drop the neutral kaon fields, φ6 = φ7 = 0,
because we expect charged kaon condensation. Then, from Eqs. (3.84) and (3.85)
we obtain

U =

⎛
⎜⎜⎜⎜⎝

cosφ 0 i
φ4 − iφ5

φ
sinφ

0 1 0

i
φ4 + iφ5

φ
sinφ 0 cosφ

⎞
⎟⎟⎟⎟⎠

. (3.86)

Now we interpret the fields φ4,5 as vacuum expectation values, φ4,5 → 〈φ4,5〉, and
neglect the fluctuations around this background. The general procedure to describe
Bose–Einstein condensation, including fluctuations, is explained in Appendix A.1
for the φ4 model. The condensates are assumed to be constant in space and to have
the time dependence φ(t, x) → φe−iμK t , i.e., our ansatz is

〈K −〉 = 〈φ4〉 + i〈φ5〉 = φe−iμK t , (3.87a)

〈K +〉 = 〈φ4〉 − i〈φ5〉 = φeiμK t . (3.87b)

The real, constant (i.e., space-time independent) value of φ has to be determined
later from minimizing the free energy; μK plays the role of a kaon chemical poten-
tial, as we shall see more explicitly below. More precisely, μK is the chemical
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potential for K − while −μK is the chemical potential for K +. We thus arrive at

U =
⎛
⎜⎝

cosφ 0 ieiμK t sinφ

0 1 0

ie−iμK t sinφ 0 cosφ

⎞
⎟⎠ . (3.88)

We are now prepared to evaluate LU from Eq. (3.70). We shall neglect the masses
of the up and down quarks such that M � diag(0, 0,ms). We also define the kaon
mass

m2
K = 2cms

f 2
π

. (3.89)

Rather than c, we shall later use the kaon mass mK � 494 MeV as a parameter of
the model. This yields

LU = −V (φ) (3.90)

with the tree-level potential

V (φ) = − f 2
πμ

2
K

2
sin2 φ + m2

K f 2
π (1 − cosφ) , (3.91)

where we have subtracted the constant vacuum contribution V (φ = 0). This poten-
tial contains the kaon condensate to all orders. We shall work with this expression
below, but it is instructive to expand it up to fourth order in φ,

V (φ) � m2
K − μ2

K

2
( fπφ)

2 + 4μ2
K − m2

K

24 f 2
π

( fπφ)
4 . (3.92)

This is the familiar expression from a φ4 model for the free energy of a Bose
condensate with chemical potential μK , mass mK , and effective coupling (4μ2

K −
m2

K )/(6 f 2
π ), see for instance Eq. (A.18) in the appendix. As expected, condensation

occurs for μ2
K > m2

K because in this case the quadratic term is negative and the
quartic term positive, i.e., we have recovered the Mexican hat potential (where we
have already picked one direction since φ is real).

For the baryonic Lagrangian we only keep the lightest baryons, the proton and
the neutron. From Eq. (3.72) we thus obtain

LB = p̄(iγ μ∂μ − m B + γ 0μp)p + n̄(iγ μ∂μ − m B + γ 0μn)n , (3.93)

where we have added the proton and neutron chemical potentials μp and μn . For
the interaction terms we need
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ξ =
⎛
⎜⎝

cos(φ/2) 0 ieiμK t sin(φ/2)

0 1 0

ie−iμK t sin(φ/2) 0 cos(φ/2)

⎞
⎟⎠ , (3.94)

which obviously fulfills ξ2 = U . By inserting this into Eqs. (3.77) we see that the
spatial components of the currents vanish, JV = JA = 0 (since there is no spatial
dependence in the condensate), and the temporal components are

J 0
V = iμK sin2(φ/2)

⎛
⎜⎝

−1 0 0

0 0 0

0 0 1

⎞
⎟⎠ , (3.95a)

J 0
A = iμK cos(φ/2) sin(φ/2)

⎛
⎜⎝

0 0 −eiμK t

0 0 0

e−iμK t 0 0

⎞
⎟⎠ . (3.95b)

Hence the various nonzero terms needed for LI in Eq. (3.76) become

iTr
[

B̄γ0

[
J 0

V , B
]]

= μK

(
2p† p + n†n

)
sin2 (φ/2) , (3.96a)

a1Tr
[

B†
(
ξMξ + ξ† M†ξ†

)
B
]

= −2a1ms p† p sin2 (φ/2) , (3.96b)

a2Tr
[

B† B
(
ξMξ + ξ† M†ξ†

)]
= 2a2ms

(
p† p + n†n

)
cos2 (φ/2) , (3.96c)

a3Tr
[
B† B

]
Tr
[
Mξ2+M†

(
ξ†
)2 ]=2a3ms

(
p†p+n†n

)[
1−2sin2(φ/2)

]
. (3.96d)

It is left as an exercise to verify these results. Inserting this into Eq. (3.76), and
putting together the contributions from the chiral field, the baryons, and the interac-
tions between them, the total Lagrangian can be written as

L = −V (φ) + p̄
[
iγ μ∂μ − m B + γ 0

(
μp + μ∗

p

)]
p

+ n̄
[
iγ μ∂μ − m B + γ 0 (μn + μ∗

n

)]
n . (3.97)

Similar to the Walecka model in Sect. 3.1, the effect of the kaon condensate on the
nucleons can be absorbed into an effective chemical potential. In a slightly different
notation than in Sect. 3.1 (where μ was absorbed into μ∗), we have kept the actual
thermodynamic chemical potentials separate, and we have

μ∗
p = 2(a2 + a3)ms + [2μK − 2(a1 + a2 + 2a3)ms] sin2(φ/2) , (3.98a)

μ∗
n = 2(a2 + a3)ms + [μK − 2(a2 + 2a3)ms] sin2(φ/2) . (3.98b)
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We can now, analogously to Sect. 3.1, evaluate the partition function at T = 0 to
obtain the thermodynamic potential density Ω = −T/V ln Z which can be writ-
ten as

Ω = V (φ) + εB − (μ∗
n + μn)nn − (μ∗

p + μp)n p , (3.99)

with the nucleon number densities nn and n p, and the nucleon energy density

εB = 2
∑

i=p,n

∫
d3k
(2π)3

√
k2 + m2

B Θ(kF,i − k) , (3.100)

where kF,i are the respective Fermi momenta.
Before adding the lepton contribution we need to find the relations between the

various chemical potentials through the conditions of chemical equilibrium. The
leptonic processes including nucleons are

n → p + � + ν̄� , p + � → n + ν� . (3.101)

Here, � = e, μ can either be an electron or a muon. We also have the purely leptonic
processes,

e → μ + ν̄μ + νe , μ → e + ν̄e + νμ , (3.102)

and the processes involving kaons,

n ↔ p + K − , e ↔ K − + νe . (3.103)

These processes lead to the independent conditions

μe = μK = μμ , μn = μp + μe . (3.104)

The system is thus characterized by two independent chemical potentials, say μe and
μn . We implement the constraint μn = μp + μe by rewriting the terms containing
the nucleon chemical potentials in the potential (3.99) as μnnn + μpn p = μnnB −
μen p. Since we want to work at fixed nB = nn + n p, we perform a Legendre
transformation of Ω with respect to the variables μn and ∂Ω

∂μn
= −nB . This amounts

to adding the term μnnB to Ω which yields the relevant free energy for the baryons
and the kaon condensate,

ΩB,K = V (φ) + εB −
[
(μ∗

p − μe)x p + (1 − x p)μ
∗
n

]
nB . (3.105)

Here we have introduced the proton fraction

x p ≡ n p

nB
, (3.106)
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which has to be determined dynamically from minimizing the free energy. We can
now add the lepton contributions to arrive at

ΩB,K ,� = ΩB,K + εe − μene + Θ
(
μ2

e − m2
μ

)
(εμ − μenμ) , (3.107)

where we have used μe = μμ, where ε� are the lepton energy densities (� = e, μ),
and where

ne = μ3
e

3π2
, nμ = (μ2

e − m2
μ)

3/2

3π2
(3.108)

are the corresponding lepton number densities. The step function in the muon con-
tribution accounts for the fact that muons only appear if μe is larger than their mass
mμ = 106 MeV. On the relevant energy scale, electrons are massless to a very good
approximation and thus are present for any nonzero μe.

For a given baryon number nB , the variables of ΩB,K ,� are the proton fraction
x p, the kaon condensate φ, and the chemical potential for (negative) electric charge
μe. They are determined by minimizing the free energy with respect to x p and φ

and by requiring charge neutrality,

∂ΩB,K ,�

∂x p
= ∂ΩB,K ,�

∂φ
= ∂ΩB,K ,�

∂μe
= 0. (3.109)

It is straightforward to compute the various derivatives, and after a few lines of
algebra the result can be written as

μe = − 1

nB cos2(φ/2)

∂εB

∂x p
− 2a1ms tan2(φ/2), (3.110a)

0 = cosφ − m2
K

μ2
e

+ nB

μ2
e f 2

π

[μe

2
(1+xp)−(a1x p + a2 + 2a3)ms

]
, (3.110b)

0 = f 2
πμe sin2 φ − nB

[
x p cos2(φ/2) − sin2(φ/2)

]

+ ne + nμΘ(μ2
e − m2

μ). (3.110c)

The second equation has been obtained after dividing both sides by sinφ. This means
that φ = 0 is always a solution and Eq. (3.110b) is only valid for nonvanishing
condensates. In the third equation we recover the various contributions to the electric
charge density: the first term on the right-hand side is the pure contribution from
the kaon condensate. It gives a positive contribution to the negative charge density
for μe > 0. The second term on the right-hand side arises from the nucleons and
their interactions with the kaon condensate. Only for φ = 0 does it give the pure
proton contribution −n p = −x pnB . Finally, the other two terms are the expected
contributions from the leptons.



54 3 Basic Models and Properties of Dense Nuclear Matter

The onset of kaon condensation can be determined by setting φ = 0 in all three
equations. This yields three equations which can be solved for xc

p, μc
e, and nc

B ,
where nc

B is the critical density beyond which there is a condensate and xc
p, μc

e the
values of the proton fraction and the charge chemical potential at this density. Since
Eq. (3.110b) is only valid for φ �= 0, this has to be understood as approaching nc

B
from above.

We leave the numerical evaluation of the critical density and the general evalu-
ation for all nB as an exercise, see Problem 3.3. An important modification, which
we have neglected for simplicity, has to be taken into account for this evaluation.
Namely, the energy density εB has to be modified due to interactions among nucle-
ons. It is beyond the scope of these lectures to derive this modification, see Ref. [5]
and references therein for more details. Here we simply quote this modification
which is needed in order to get physically sensible results. One needs to use an
expansion of εB around symmetric nuclear matter x p = 1/2 of the form

εB → ε0 + nB(1 − 2x p)
2S(u) , u ≡ nB

n0
. (3.111)

Here ε0 is the energy density of symmetric nuclear matter, whose form is not rel-
evant because we only need the derivative of εB with respect to x p. The nuclear
saturation density is denoted by n0, and

S(u) = (22/3 − 1)
3

5

(3π2n0/2)2/3

2m B

[
u2/3 − F(u)

]
+ S0 F(u) (3.112)
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Fig. 3.5 Density fractions of neutrons (n), protons (p), electrons (e−), muons (μ−), and the
kaon condensate (K −) from Eqs. (3.110) with εB modified as given in Eqs. (3.111) and (3.112).
The parameters are (see Ref. [5]) a1ms = −67 MeV, a2ms = 134 MeV, a3ms = −222 MeV,
mμ = 106 MeV, fπ = 93 MeV, mK = 494 MeV, m B = 1200 MeV. We see that for this parameter
choice the onset of kaon condensation is at about three times nuclear saturation density, nc

B � 3.2n0
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is the nuclear symmetry energy (see Ref. [7] for a discussion of the nuclear symme-
try energy in the context of the maximum mass of neutron stars). For the numerical
evaluation shown in Fig. 3.5, the nuclear symmetry energy at the saturation point
S0 = 30 MeV has been used, as well as the function F(u) = u. See caption of the
figure for the choice of the other parameters.

3.4 From Hadronic to Quark Phases: Possibility
of a Mixed Phase

We have already mentioned the possibility of a hybrid star, i.e., a star with a quark
matter core surrounded by nuclear matter. How does the interface between these
two phases look? Is it a sharp interface or is there a shell in a hybrid star where the
hadronic and quark phases coexist in a mixed phase? If the former is true, there will
be a jump in the density profile of the star, while the latter allows for a continuous
change in density.

Mixed phases are a very general phenomenon. In the context of compact stars,
not only the mixed hadronic/quark matter phase is of relevance. Also in the inner
crust of a hybrid or neutron star one may find mixed phases. There one expects a
neutron superfluid coexisting with a lattice of ions, i.e., a mixed phase of neutron
matter and nuclei. In these lectures, we shall not discuss the properties of the crust
of a compact star in detail. See Sect. 6.2 for a brief discussion and Ref. [8] for an
extensive review. Other examples of mixed phases in different systems are liquid-gas
mixtures or simply a solid, which is a mixture of an electron gas and nuclear matter
(sitting in the lattice of ions).

In Fig. 3.6 the possibility of a mixed phase is illustrated. We see that the condition
of charge neutrality plays an important role here. It is important that in a compact
star charge neutrality is required globally, not locally. In other words, certain regions
in the star may very well have a nonzero electric charge as long as other regions have
opposite charge to ensure an overall vanishing charge.

It is plausible that such a mixed phase will have a crystalline structure. For
instance, one phase may form spheres sitting at the points of a lattice which is
immersed in the other phase. Other possibilities are rods or slabs [9], such that the
mixed phase looks like spaghetti or lasagna, wherefore astrophysicists have termed
such phases nuclear pasta. In any case, if a mixed phase is possible because of a gen-
eral argument such as given in Fig. 3.6, this does not mean that it is indeed realized.
One has to take into account Coulomb forces (which seek to break charged regions
into smaller regions) and surface forces (which seek to minimize the surface and
thus work in the opposite direction). We shall not discuss these forces quantitatively
but rather give some general arguments about mixed phases.

We start from the simple picture that at small quark density (or quark chemical
potential μ) the hadronic phase is preferred and that there is a first-order phase tran-
sition to the quark matter phase at some critical chemical potential. The question is
whether there is a mixed phase between these two pure phases. The pressures of the
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Fig. 3.6 Illustration of the possibility of a mixed phase. The pressure P of two phases A and B
is given by the respective curves as a function of a chemical potential μ. Note that ∂P/∂μ has to
increase with increasing μ (increasing μ cannot lead to a decrease of the corresponding charge; this
would lead to an instability). Suppose μ is the electric charge chemical potential and we require
charge neutrality. Then the squares mark the points at which a given phase is charge neutral. The
circle in the left panel marks a point where the two phases have equal pressure and opposite charge.
Since this point has higher pressure than either of the squares, this is the ground state (neglecting
surface tension and Coulomb energy). In this state, phase A and B coexist and occupy different
volume fractions, determined by the different slopes of the curves. In the right panel, there is no
point where both phases have equal pressure and opposite charges. Therefore, the square on the
curve B is the ground state

two phases Ph(μ,μe) and Pq(μ,μe) depend on the quark chemical potential and
the charge chemical potential μe (we work at zero temperature). Phase coexistence
is possible when the pressures of the two phases are equal,

Ph(μ,μe) = Pq(μ,μe) . (3.113)

Now suppose the neutrality condition were local (which it isn’t in our context). Then
the charge must vanish in each phase separately,

Qh(μ,μe) = Qq(μ,μe) = 0 . (3.114)

These two conditions yield μe for each phase separately as a function of μ, μh
e (μ)

and μ
q
e (μ). Consequently, the condition of equal pressure,

Ph(μ,μ
h
e (μ)) = Pq(μ,μ

q
e (μ)) , (3.115)

yields a unique μ. Only at this μ do the phases coexist. This amounts to a sharp
interface at a given value for the pressure, where on both sides of the interface the
pure hadronic and the pure quark phases exist with different densities, i.e., there is
a density jump in the profile of the star.

Now we impose the weaker (and realistic) condition of global charge neutrality.
This means that in any mixed phase only the total charge has to vanish. We denote
the quark volume fraction by
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χq ≡ Vq

Vh + Vq
∈ [0, 1] , (3.116)

where Vq and Vh are the volumes occupied by the quark and hadron phases, respec-
tively. Then, neutrality reads

(1 − χq)Qh(μ,μe) + χq Qq(μ,μe) = 0 . (3.117)

This yields a function μe(χq , μ) which is then inserted into the condition of equal
pressure,

Ph(μ,μe(χq , μ)) = Pq(μ,μe(χq , μ)) . (3.118)

The result is a chemical potential as a function of χq , μ(χq). Thus there is a finite
interval on the μ-axis where a mixed phase is possible. We see that the looser con-
dition of global charge neutrality allows for a shell with a mixed phase in a hybrid
star. These formal arguments become more transparent in a geometric picture, see
Fig. 3.7.

We shall not go into the details of an explicit calculation of the quark/hadron
mixed phase because, even neglecting surface tension and Coulomb energy, this
calculation eventually has to be performed numerically. Instead we show the result

μqP  (   ,     )μe

μh μP  (   ,     )e

μ μehQ  (   ,     ) = c

μ μeqQ  (   ,     ) = c

P

A

B μ

μe

P

μe

μ

Fig. 3.7 Schematic picture of a hadron-quark mixed phase in a finite interval of μ. Left panel:
the pressures of the two phases define two surfaces parametrized by μ and μe. The intersection
of the two surfaces forms a line where coexistence of the two phases is possible. Right panel: the
neutrality condition for each of the phases defines a curve in the μ–μe plane, and thus a curve on
the respective surfaces (for illustrative purposes let the charge be nonzero – denoted by c – since
for zero charge there would have to be a valley of the pressure). A mixed phase may exist from
A (where χq = 0) to B (where χq = 1), provided that, for a given μ, the pressure on this line
is larger than the respective pressure on the neutrality curves of each phase. In this segment none
of the phases is neutral separately, but they may combine to a globally neutral phase. Note that
the extra direction μe is crucial to have a finite segment along the μ axis where a mixed phase is
possible. If the mixed phase is realized, the arrows indicate the ground state for increasing values
of μ (the pressure also has to increase along this line)
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Fig. 3.8 Figure from Ref. [10] showing the transition from nuclear matter (NM) to a mixed phase
(mix) to a quark matter phase (CFL) (color-flavor locking (CFL) is explained in Sect. 4.2). In the
mixed phase, μe is lowered in order to make the nuclear phase positively charged and the CFL
phase negatively charged. Taking into account Coulomb energy and surface energy shows that
the μ interval for the mixed phase shrinks with increasing surface tension σ until it completely
disappears for σ � 40 MeV/fm2. The exact value of σ is not known but it is likely to be larger
than that limit value such that a mixed phase appears unlikely. The limit value does not depend
much on whether the mixed phase has spheres, rods, or slabs

of such a calculation [10] in Fig. 3.8 (cf. also Fig. 3.4 where we have already seen a
mixed phase). One recovers the (projection of the) topology of Fig. 3.7 in Fig. 3.8.
The figure shows the mixed phase being the preferred phase in a certain μ interval
without taking into account Coulomb energy and surface energy. In the complete
calculation one finds that a relatively small surface energy is needed to destroy the
mixed phase. It thus appears unlikely that a mixed phase of quarks and hadrons
exists in a hybrid star.

Problems

3.1 Binding energy and saturation density in the Walecka model
Solve Eq. (3.23) at zero temperature numerically for different values of the baryon
density. Use the solution to compute the binding energy per nucleon and check
that the values (3.36) are obtained upon using the values of the coupling constants
g2
ω/(4π) = 14.717, g2

σ /(4π) = 9.537. In other words, reproduce the results from
Fig. 3.2. If you are a bit more ambitious you can also do it the other way around: set
up and solve the two equations that are needed to determine the coupling constants
from the conditions (3.36).

3.2 Walecka model with scalar interactions
Reproduce the result of Fig. 3.3 numerically.
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3.3 Onset of kaon condensation
Solve Eqs. (3.110) – with the modifications given in Eqs. (3.111) and (3.112) –
numerically to determine the density fractions of nucleons, kaons, and leptons at
T = 0 as a function of baryon density. In particular, compute the critical baryon
density for the onset of kaon condensation. See caption of Fig. 3.5 for the values of
the parameters and compare your result to the plot in this figure.
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Chapter 4
Superconductivity and Superfluidity
in a Compact Star

In our discussion of interacting nuclear matter we have so far ignored a very impor-
tant physical effect. We have not included the possibility of superfluidity and/or
superconductivity, although we have briefly mentioned the effect of superconduc-
tivity on the equation of state of quark matter, see Sect. 2.3. In the following, we
shall discuss these effects in more detail. But first let us recapitulate what super-
conductivity is. Once we have introduced the basic concept we shall see that it may
appear in several variants in a compact star. And we will see that it is crucial for the
understanding of transport properties of dense matter. And the transport properties
of dense matter, in turn, are related to the phenomenology of the star.

Consider a system of fermions at zero temperature with chemical potential μ and
free energy

Ω = E − μN . (4.1)

Now first suppose the fermions are noninteracting. Then, adding a fermion with
energy μ, i.e., at the Fermi surface, leaves the free energy Ω obviously unchanged:
the energy E is increased by μ, but the second term subtracts the same amount since
we add N = 1 fermion. Now let us switch on an arbitrarily small attractive inter-
action between the fermions. Then, by adding two fermions at the Fermi surface,
we can actually lower the free energy because the attractive interaction will lead
to an energy gain from the binding energy. Therefore, the Fermi surface we have
started with is unstable. A new ground state is formed in which pairs of fermions are
created at the Fermi surface. Since two fermions formally can be viewed as a boson,
these fermion pairs will form a Bose condensate.1 This formation of a condensate

1 In fact, the fermions are correlated in momentum space, not in real space. Consequently, in the
weak-coupling limit, the fermion pairs are not spatially separated bosons. The typical size of a
pair is rather larger than the mean distance between fermions. Therefore, one apparently has to be
careful to describe the pairs as bosons. However, recent experiments with cold fermionic atoms
show that there is no phase transition between the weak-coupling limit (where the pairs are wide
spread) and the strong-coupling limit (where the pairs are actual difermions, i.e., bosons). This is
the so called BCS-BEC crossover. This observation suggests in particular that it is not too bad to
think of the fermion pairs as bosons even in the weak-coupling limit.

Schmitt, A.: Superconductivity and Superfluidity in a Compact Star. Lect. Notes Phys. 811, 61–94
(2010)
DOI 10.1007/978-3-642-12866-0_4 c© Springer-Verlag Berlin Heidelberg 2010
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of fermion pairs due to an arbitrarily small interaction is called Cooper’s Theorem
and the fermion pairs are called Cooper pairs.

This mechanism is completely general, i.e., it holds for arbitrary fermions with
a Fermi surface as long as their interaction is attractive. It holds for electrons in a
usual superconductor, i.e., a metal or alloy, for 3He atoms in superfluid helium, for
fermionic atoms in an optical trap etc. In our context, it can be applied to protons,
neutrons, and quarks. Anticipating that the Cooper mechanism leads to superfluidity
for neutral fermions and to superconductivity for charged fermions, we thus expect
(i) neutron superfluidity, (ii) proton superconductivity, and (iii) quark superconduc-
tivity to be in principle possible in a compact star. Quarks are of course a bit more
complicated since they not only carry electric charge but also color charge. There-
fore, we need to make more precise what we mean by quark superconductivity, see
Sect. 4.2.

Let us first stay on a very general level and discuss the basic consequences
of Cooper pairing. A Cooper pair is held together by a sort of “binding energy”
(although it is not a bound state), i.e., one needs a finite amount of energy to break a
pair. Consequently, the single-particle dispersion relation acquires an energy gap Δ,

εk =
√
(Ek − μ)2 + Δ2 , (4.2)

with Ek = √
k2 + m2 as in the previous chapters. One might think that εk does not

reproduce the usual dispersion Ek − μ for a vanishing gap, rather εk → |Ek − μ|.
This is no contradiction after taking into account the fermion hole excitations,
such that in the ungapped system εk = ±(Ek − μ) to which the Δ = 0 limit
of εk = ±√(Ek − μ)2 + Δ2 is indeed equivalent. The excitation described by
Eq. (4.2) is also called quasiparticle since it contains the interaction of the original
particles in an effective way. To excite a quasifermion in a superconductor, a finite
amount of energy is needed, while a fermion at the Fermi surface of a noninteracting
system can be excited by an infinitesimally small energy, see Fig. 4.1. The energy
gap in the dispersion relation is responsible for most of the phenomenological
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Fig. 4.1 Left panel: particle and hole excitations (solid lines) in a system of noninteracting ultrarel-
ativistic fermions with chemical potential μ. The dashed lines are the antiparticle and antiparticle
hole excitations. Right panel: quasiparticle excitations after switching on small interactions which,
via Cooper’s Theorem, give rise to an energy gap Δ according to Eq. (4.2), here chosen to be
Δ = 0.5μ. What were pure particle and pure hole excitations in the left panel have now become
momentum-dependent mixtures of particles and holes
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properties of a superconductor. For instance, it gives rise to the frictionless charge
transport in an electronic superconductor, since (sufficiently low energy) scattering
of electrons off phonons cannot excite a single-electron state. Or, in the context
of superfluidity, the energy gap explains the frictionless flow in the same way. For
quantitative predictions it is thus crucial to compute the magnitude of Δ. We shall
perform this calculation within perturbative QCD for quarks in Sect. 4.3.

The energy gap is in general a temperature-dependent quantity. It typically
decreases with temperature and becomes zero at and above a certain critical tem-
perature Tc. This critical temperature indicates the phase transition from the super-
conducting to the non-superconducting phase, as we shall demonstrate with the
discontinuity of the specific heat in the following section. Since the onset of super-
conductivity or superfluidity is a phase transition, there must be a symmetry which is
spontaneously broken below the critical temperature. In particular for quark matter,
the symmetry breaking pattern is very useful to characterize the superconductor, see
Sect. 4.2.

4.1 Specific Heat for Isotropic and Anisotropic Superconductors

As a example of the effect of Δ let us compute the specific heat of a supercon-
ductor.2 The specific heat is easy to compute and shows characteristic features of a
superconductor. We start from the free energy of a superconductor made of fermions
with two degenerate (spin-)degrees of freedom,

Ω = −2T
∫

d3k
(2π)3

ln
(

1 + e−εk/T
)
, (4.3)

where the quasiparticle energy εk is given by Eq. (4.2). We shall, for simplicity,
consider massless fermions, Ek = k. The entropy (density) is given by the derivative
with respect to the temperature (with respect to the explicit temperature dependence
only, there is also an implicit temperature dependence in Δ)

s = −∂Ω

∂T
= −2

∫
d3k
(2π)3

[
(1 − fk) ln(1 − fk) + fk ln fk

]
. (4.4)

with the Fermi distribution

fk = 1

eεk/T + 1
. (4.5)

To derive Eq. (4.4) one uses the identities

2 More precisely, here we compute the fermionic contribution to the specific heat. There may be
light Goldstone modes which dominate the specific heat at small temperatures. In this section we
ignore such modes for the purpose of illustrating the effect of the fermionic energy gap.
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εk

T
= ln(1 − fk) − ln fk , ln

(
1 + e−εk/T

)
= − ln(1 − fk) . (4.6)

From the entropy we then compute the specific heat (at constant volume)

cV ≡ T
∂s

∂T
= 2

∫
d3k
(2π)3

εk
∂ fk

∂T
. (4.7)

For the temperature dependence of the gap we assume the following simple form,

Δ(T ) = Θ(Tc − T )Δ0

√
1 − T 2

T 2
c
, (4.8)

such that the zero-temperature gap is Δ0, the gap approaches zero at T = Tc and
vanishes for all temperatures larger than Tc. Then, for T < Tc we have

∂Δ

∂T
= −Δ2

0

T 2
c

T

Δ
⇒ ∂εk

∂T
= − T

εk

Δ2
0

T 2
c

⇒ ∂ fk

∂T
= 1

εk

eεk/T

(
eεk/T + 1

)2
(
ε2

k

T 2
+ Δ2

0

T 2
c

)
,

(4.9)
and consequently

cV = 2
∫

d3k
(2π)3

eεk/T

(
eεk/T + 1

)2
(
ε2

k

T 2
+ Δ2

0

T 2
c

)
. (4.10)

We are only interested in temperatures much smaller than the chemical potential,
T � μ. Then, the main contribution comes from the Fermi surface, and we can
approximate dk k2 → μ2dk. We introduce the new variable x = (k − μ)/T , and
define

ϕ ≡ Δ

T
. (4.11)

This yields

cV � μ2T

π2

∫ ∞

0
dx
∫ π

0
dθ sin θ

(
x2 + ϕ2 + Δ2

0

T 2
c

)
e
√

x2+ϕ2

(
e
√

x2+ϕ2 + 1
)2

, (4.12)

where we have approximated the lower boundary by −μ/T � −∞ and have used
that the integrand is even in x (which gives rise to the new integration boundaries
[0,∞] and a factor 2). We have not yet performed the θ integral since we shall
allow for anisotropic gaps. From this general expression we easily get the limit of a
vanishing gap, ϕ = Δ0 = 0, i.e., the result for the non-superconducting state,
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c0
V � μ2T

π2

∫ ∞

0
dx

x2

1 + cosh x
= μ2T

3
. (4.13)

Before evaluating the specific heat in the superconducting phase at small tempera-
tures, let us discuss the behavior of cV at the critical temperature. This is best done
by looking at Eq. (4.10). Approaching Tc from above, cV is given by setting Δ0
and Δ(T ) (appearing in εk) to zero in that equation. In the superconducting phase,
approaching Tc from below, we only set Δ in εk to zero. Consequently, at Tc there
is a jump in the specific heat which is given by

ΔcV = 2
Δ2

0

T 2
c

∫
d3k
(2π)3

eεk/T

(
eεk/T + 1

)2

� Δ2
0μ

2

π2Tc

∫ ∞

0
dx

1

1 + cosh x
= Δ2

0μ
2

π2Tc
, (4.14)

where we have assumed the gap to be isotropic. This jump is a typical signature for
a second-order phase transition, since the specific heat is the second derivative of
the thermodynamic potential.

Next we evaluate Eq. (4.12) for temperatures much smaller than the gap, i.e., in
the limit ϕ → ∞. First we consider an isotropic gap. We can approximate

e
√

x2+ϕ2

(
e
√

x2+ϕ2 + 1
)2

� e−
√

x2+ϕ2 � e−ϕ− x2
2ϕ . (4.15)

Consequently,

cV � 2μ2T

π2
e−ϕ

[∫ ∞

0
dx x2e− x2

2ϕ +
(
ϕ2 + Δ2

0

T 2
c

)∫ ∞

0
dx e− x2

2ϕ

]

�
√

2μ2T

π3/2
ϕ5/2e−ϕ , (4.16)

where we used

∫ ∞

0
dx x2e− x2

2ϕ = ϕ3/2

√
π

2
,

∫ ∞

0
dx e− x2

2ϕ = ϕ1/2

√
π

2
. (4.17)

The main result is that the specific heat is exponentially suppressed by the factor
e−ϕ = e−Δ/T for temperatures much smaller than the gap. The suppression of the
specific heat in a superconductor provides a good example to get some intuition
for the properties of superconductors. To this end, note that the specific heat is a
measure of how many degrees of freedom are available to store heat. A large number
of degrees of freedom means a lot of “storage room” and thus a large specific heat.
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A small specific heat, such as for a superconductor at sufficiently small temperature,
thus means there are very few states available. This is a direct consequence of the
energy gap which obviously leads to a region in the energy spectrum with no allowed
states. Only by increasing the temperature does the exponential suppression disap-
pear because temperature provides the energy to populate states above the gap which
in turn are then available to store thermal energy.

Next let us assume an anisotropic gap of the form

Δ → Δ sin θ . (4.18)

In a compact star, anisotropic gaps may be realized in neutron superfluidity and
possibly for quark superconductivity. The reason is very different in the two kinds of
matter: at large density, the s-wave interactions between neutrons become repulsive
and thus only interactions in the p-wave channel can lead to superfluidity (this is
in contrast to protons which do form s-wave superconductors). In the case of quark
matter, anisotropic gaps may occur due to a mismatch in Fermi momenta of the
quarks that form Cooper pairs; anisotropies then arise either because the mismatch
allows only for pairing in certain directions in momentum space or because pairing
occurs in the spin-one channel which does not suffer from the mismatch. In either
case, there are several possibilities for the specific form of the angular dependence
of the gap and it is not entirely clear which one is realized in the relevant density
regime. For more details see for instance Refs. [1, 2] for nuclear matter and Ref. [3]
for quark matter.

With θ being the angle between the momentum and the z-axis, the form (4.18)
implies point-like nodes of the gap function at the north and south pole of the
Fermi sphere. In other words, although there is a nonzero order parameter for
superfluidity, there are directions in momentum space where quasiparticles can
be excited with infinitesimally small energy. For sufficiently small temperatures,
these directions give the dominant contribution to the specific heat. Therefore, in
the low-temperature approximation, we only integrate over angles in the vicinity of
the nodes. We restrict the angular integration by requiring the quasiparticle energy
(with respect to the Fermi surface) to be at most of the order of the scale set by the
temperature,

Δ0 sin θ � πT , (4.19)

which, for small angles θ and small temperatures implies θ � π/ϕ. Therefore, the
specific heat becomes (note the factor 2 since we obtain the same result for north
and south pole)

cV � μ2T

π2

∫ ∞

0
dx

1

1 + cosh x

∫ π/ϕ

0
dθ θ

(
x2 + ϕ2θ2

)

� 5π2

4

μ2T

3

1

ϕ2
(4.20)



4.1 Specific Heat for Isotropic and Anisotropic Superconductors 67

We see that instead of an exponential suppression we now get a power-law suppres-
sion ∝ (T/Δ)2 of the specific heat compared to the non-superconducting result.
In this sense, the specific heat measures how effectively the quasiparticle excita-
tions are suppressed by the gap. Our result shows that the dimensionality of the
zero-energy excitations in momentum space translates into the temperature depen-
dence of the specific heat: in the normal phase, there is a two-dimensional Fermi
surface that contributes at T = 0, while for an isotropic gap, this Fermi surface
is, simply speaking, gone. The anisotropic gap (4.18) is an intermediate case, its
suppression lies between the normal and the completely gapped phase. One may
thus expect that between the zero-dimensional point nodes and the fully gapped
spectrum there is another intermediate case, namely one-dimensional line nodes, see
Problem 4.1.

The low-temperature results for the specific heat are relevant for the physics of
compact stars because the superconducting gap of either nucleonic superconduc-
tivity/superfluidity or quark superconductivity may well be much larger than the
temperature of the star. In particular, the specific heat is important in the context of
the cooling of the star, for example through neutrino emissivity εν . With εν being
the energy loss per unit time and volume through neutrino emission (for example
through the processes (2.27) in nuclear matter or the processes (2.40) in quark mat-
ter), the relation between εν , cV , and the change in temperature is

εν(T ) = −cV (T )
dT

dt
. (4.21)

(The minus sign is needed since a positive εν is an energy loss, i.e., the temperature
will decrease, dT/dt < 0.) Integrating this relation from a time t0 (with temperature
T (t0) = T0) yields

t − t0 = −
∫ T

T0

dT ′ cV (T ′)
εν(T ′)

. (4.22)

This shows that the ratio of the specific heat and the neutrino emissivity enters the
cooling behavior of the star. Typically, for a given phase, the neutrino emissivity
will exhibit a similar behavior as the specific heat. For instance, in a supercon-
ductor, the emissivity as well as the specific heat are exponentially suppressed in
which case the subleading behavior becomes important. In a real compact star,
however, there is most likely not just a single phase and the phase that dominates
the behavior of the emissivity is not necessarily the one that dominates the specific
heat.

The neutrino emissivity is much more difficult to compute than the specific heat,
and we devote a whole chapter to its discussion and to a detailed calculation for the
case of quark matter, see Chap. 5.
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4.2 Color-Flavor Locked (CFL) Quark Matter

In our discussion of superconductivity and superfluidity in compact stars we first
focus on a density regime where we can perform rigorous calculations from first
principles. This is the regime of asymptotically large densities, where we deal with
weakly coupled, deconfined quark matter.3 The quarks are weakly coupled due to
asymptotic freedom, which says that the coupling of QCD becomes weak for large
exchanged momenta. For our purpose, the QCD coupling can be considered as a
function of the quark chemical potential and becomes arbitrarily small for large
chemical potentials. In other words, quarks at infinite chemical potential are free.
Because of this important property of QCD we may use perturbative methods at
high densities. The high-density region of the QCD phase diagram shown in Fig. 1.1
is therefore maybe the best understood regime of QCD. The other regimes in that
phase diagram are more complicated: we have seen that for nuclear matter one
usually relies on phenomenological models; the high-temperature, small-density
region, where the QCD coupling also becomes small, has subtle nonperturbative
effects because of infrared degrees of freedom; first-principle QCD calculations via
computer simulations (lattice QCD) are much more complicated than perturbative
physics at high densities and are so far restricted to vanishing chemical potential.

This possibility of understanding a region of the phase diagram rigorously from
first principles is a good theoretical motivation to study ultra-dense quark matter.
However, for our astrophysical purposes we need to point out that these studies are
valid at densities much larger than expected in compact stars. In a compact star, the
quark chemical potential is at most of the order of μ � 500 MeV. The perturbative
calculation of the energy gap Δ, to be discussed in Sect. 4.3, can be estimated to be
reasonable at chemical potentials of the order of μ � 108 MeV (!) Given this dif-
ference of many orders of magnitude, extrapolation of perturbative results down to
compact star densities may seem bold. However, the (rough) quantitative agreement
of these extrapolations with different approaches, using phenomenological models,
gives us some confidence that the ultra-high density calculation may be of relevance
for astrophysical calculations. Furthermore, we shall also apply general arguments,
based on symmetries, which we can expect to hold even at moderate density where
the coupling is strong. In summary, the following discussion, strictly speaking only
valid for extreme densities, is of theoretical interest and may also give us insight
into compact star physics.

At this point we may remember that we have already discussed the approach to
compact star densities from the opposite side. In the Walecka model of Sect. 3.1 we
have constructed the model such that we have reproduced properties of nuclear mat-
ter at densities accessible in the laboratory. These densities are lower than the ones
in compact stars. We had to extrapolate up to higher densities to obtain predictions

3 We shall not go into details of neutron superfluidity and proton superconductivity. For a detailed
review of these matters, see Ref. [4]. A shorter discussion can be found for instance in Sect. 3.2 of
Ref. [5].
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of astrophysical relevance. Therefore, we learn that matter inside compact stars is
quite hard to tackle; we have to approach it from different sides, and currently we do
not have rigorous control over our approaches. This reflects the discussion begun in
the introduction: it shows that the question “What is the matter composition inside
a compact star?” is, due to our lack of understanding of dense, strongly-interacting
matter, not only an application of QCD but also relevant to understand QCD.

From this somewhat philosophical discussion now back to superconductivity in
quark matter. Cooper’s Theorem tells us that an attractive interaction, however small
it may be, leads to the formation of a quark Cooper pair condensate. At asymptoti-
cally high densities, this attractive interaction is provided by single-gluon exchange.
We can formulate quark pairing in terms of representations of the color gauge group
SU (3)c,

SU (3)c : [3]c ⊗ [3]c = [3̄]A
c ⊕ [6]S

c . (4.23)

On the left-hand side we have two quarks in the fundamental representation, i.e., two
complex three-vectors since the number of colors is three, Nc = 3. They interact
in an antisymmetric (A) anti-triplet channel and a symmetric (S) sextet channel
which are attractive and repulsive, respectively. The attractive channel thus provides
an anti-triplet of diquarks which has (anti-)color charge. The attractiveness of this
channel can be understood for instance from the existence of baryons. Namely, in a
simple picture a baryon contains a diquark in the [3̄]A

c representation. If it is made
of, say, a red and a green quark it has color anti-blue. The baryon is then color-
neutralized by combining this anti-blue diquark with a blue quark.

An obvious property of a quark Cooper pair is that it is color-charged. There-
fore, it breaks the color symmetry SU (3)c spontaneously. In analogy to electronic
superconductors, which break the electromagnetic U (1)em, quark Cooper pairing
is thus termed color superconductivity. For an extensive review of color supercon-
ductivity see Ref. [6]. The order parameter of color superconductivity is the expec-
tation value of the quark-quark two-point function 〈ψψ〉. The color structure of
this object has to be antisymmetric because the antisymmetric representation [3̄]A

c
is the attractive channel. The flavor structure is governed by the chiral symmetry
group SU (3)R × SU (3)L ,4 discussed in Sect. 3.3.1. For now, we may consider
these symmetries to be exact, since at the high densities we are working we may
neglect all three quark masses compared to the chemical potential. Each of these
global SU (3)’s leads to the same representations as the color group,

SU (3) f : [3] f ⊗ [3] f = [3̄]A
f ⊕ [6]S

f , (4.24)

4 As already mentioned in the introduction, we neglect the heavy quark flavors although in this sec-
tion we consider asymptotically large densities. Since we are ultimately interested in extrapolating
our results down to compact star densities, we only take u, d, and s quarks into account.
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with f = L , R. Since the overall wave function of the Cooper pair has to be anti-
symmetric and since pairing in the antisymmetric spin-zero channel is preferred, we
need to pair in the flavor [3̄]A

f channel. In other words, the color-flavor structure of
the Cooper pair is

〈ψψ〉 ∈ [3̄]A
c ⊗ [3̄]A

f . (4.25)

More specifically, with A, α, β ≤ 3 being color indices and B, i, j ≤ 3 being flavor
indices,

〈ψα
i Cγ5ψ

β
j 〉 ∝ εαβAεi j Bφ

B
A . (4.26)

Here, we have added the Dirac structure with the charge-conjugation matrix C ≡
iγ 2γ 0, leading to even-parity, spin-singlet pairing. The 3 × 3 matrix φ now deter-
mines the specific color-flavor structure within the given antisymmetric repre-
sentations. This shows that there are in principle many different possible color-
superconducting phases. They are distinguished by different pairing patterns, i.e., by
which quark pairs with which other quark. (At asymptotically large densities, where
the flavor symmetries are exact, many pairing patterns are equivalent by symmetry
and only a few physically distinct phases exist.) In particular, one may construct
phases in which some of the quarks are paired while some others are not.

At high densities, the favored phase is the color-flavor locked (CFL) phase [7].
We can characterize it by the following properties,

(i) The CFL order parameter is given by

φB
A = δB

A ⇒ 〈ψα
i Cγ5ψ

β
j 〉 ∝ εαβAεi j A . (4.27)

(ii) In the CFL phase, all quarks are paired with pairing pattern rd − gu, bu − rs,
bd −gs, ru−gd −bs (where rd is a red down quark, gu a green up quark etc.),
and there are 8 quasiparticles with gap Δ and 1 quasiparticle with gap 2Δ.

(iii) The CFL phase has the following symmetry breaking pattern,

SU (3)c × SU (3)R × SU (3)L × U (1)B → SU (3)c+L+R × Z2 . (4.28)

These three properties are in fact equivalent. Before discussing their physical
implications, many of which can be read off from properties (ii) and (iii), let us
show how the physical statement (ii) follows from the more abstract statement (i).
To get a clear picture of the matrix structure of the order parameter, let us denote
the bases of the color and flavor antitriplets [3̄]A

c and [3̄]A
f by (J A)αβ = −iεαβA,

(IB)i j = −iεi j B . Then, we can write Eq. (4.27) as
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〈ψCγ5ψ〉CFL ∝ J · I = i

⎛
⎝

0 −I3 I2
I3 0 −I1

−I2 I1 0

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

−1 0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.29)

This 9 × 9 matrix is obviously symmetric, as required (the color-flavor structure is
symmetric, giving overall antisymmetry through the antisymmetric Dirac structure).
Its rows and columns are labelled with the nine quarks, ru, rd, rs, gu, gd, gs, bu,
bd, bs. A nonzero entry indicates that the corresponding quarks pair. We see that the
matrix has a block structure with three 2×2 blocks and one 3×3 block. This leads to
the pairing pattern given in point (ii). Note that this is a basis dependent statement.
In particular, since the color symmetry is a gauge symmetry, 〈ψCγ5ψ〉 is a gauge
variant object. The physically relevant statement, however, is the second part of
point (ii) about the quasiparticle excitations. This statement is gauge invariant. The
gap structure is given by the eigenvalues of the square of the above 9 × 9 matrix,

εk,r =
√
(k − μ)2 + λrΔ2 , (4.30)

where λr are the eigenvalues of

L ≡ (J · I)2 . (4.31)

We shall prove the form of the quasiparticle excitations (4.30) in Sect. 4.3. Here we
simply compute the eigenvalues λr . They are given by the solutions of

det(λ − L) = 0 . (4.32)

This can be rewritten as

0 = exp [Tr ln(λ − L)] = exp

[
Tr

(
ln λ −

∞∑
n=1

Ln

nλn

)]
. (4.33)

We now have to compute Ln . First note that

(J · I)αβi j = −εαβAεi j A = −δαi δ
β
j + δαj δ

β
i ⇒ Lαβ

i j = δαβδi j + δαi δ
β
j . (4.34)

This result can be used to compute

L2 = 5L − 4 . (4.35)
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Consequently, all powers of L only have the matrix structures L and 1. Thus we
make the ansatz

Ln = an L + bn . (4.36)

Multiplying both sides of this equation by L and using Eq. (4.35) yields

an+1 = 5an + bn , bn+1 = −4an . (4.37)

These recursion relations can be solved with the ansatz an = pn . This yields the
equation p2 = 5p − 4 which is solved by p1 = 4 and p2 = 1. Consequently, the
general solution is the linear combination

an = αpn
1 + βpn

2 = 4nα + β . (4.38)

From above we know a1 = 1 and a2 = 5 which yields α = −β = 1/3. Hence

Ln = 4n − 1

3
L − 4n − 4

3
. (4.39)

Inserting this into Eq. (4.33) yields

0 = exp

{
Tr

[
L − 1

3
ln(λ − 4) − L − 4

3
ln(λ − 1)

]}
. (4.40)

Now we use Tr 1 = 9 and, from Eq. (4.34), Tr L = 12. Thus we have

0 = exp [ln(λ − 4) + 8 ln(λ − 1)] = (λ − 4)(λ − 1)8 . (4.41)

Consequently, the eigenvalues of L are 1 (eightfold) and 4 (onefold). Physically
speaking, together with Eq. (4.30) this means that in the CFL phase 8 quasiparticle
excitations have a gap Δ and 1 quasiparticle excitation has a gap 2Δ. This is the
second part of point (ii). Of course, this discussion says nothing about the magnitude
of Δ, which has to be computed from the QCD gap equation, see subsequent section.
We leave it as an exercise to show that (iii) follows from (i), see Problem 4.2.

Points (ii) and (iii) reveal many important physical properties of the CFL state.
Since these points are solely based on symmetry considerations, they are indepen-
dent of the details of the interaction. Therefore, they can be expected to hold also at
lower densities where perturbative QCD is not applicable. First, one may ask why
CFL is the ground state and not any other order parameter given by a different matrix
φB

A . The simple answer is that the CFL order parameter is the only one in which all
quarks participate in pairing, as we have seen. All other possible order parameters
leave several excitations ungapped. Therefore, the CFL phase leads to the largest
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condensation energy and thus is the ground state at high densities (at lower densities
the situation is much more complicated). A more formal argument is that the CFL
phase is the color superconductor with the largest residual symmetry group. It is
thus a particularly symmetric state which also indicates that it is preferred over
other color superconductors, although this is not a rigorous argument.

From (iii) we read off the following properties of CFL,

• CFL breaks chiral symmetry. We see that the CFL symmetry breaking pattern
(4.28) is, regarding chiral symmetry, the same as in Eq. (3.65). However, the
mechanisms are different. The latter is caused by a chiral condensate of the form
〈ψ̄RψL 〉, while the CFL condensate has the form 〈ψRψR〉 (and the same with
R → L). At first sight, the CFL condensate thus preserves the full chiral symme-
try, i.e., apparently one can still do separate L and R rotations without changing
the ground state. However, the symmetry breaking occurs through the “locking”
with color, i.e., in order to leave the order parameter invariant, a color rotation has
to be undone by equal rotations in the left- and right-handed sectors. Although
caused by different mechanisms, the two scenarios lead to similar physics. As for
the usual chiral symmetry breaking, the CFL phase also has an octet of Goldstone
modes. Since all fermions acquire an energy gap, these Goldstone modes become
very important for the phenomenology of the CFL phase. Moreover, at lower
densities, where the strange quark mass cannot be neglected, kaon condensation
is expected in the CFL phase, not unlike its nuclear matter relative discussed in
Sect. 3.3. The kaon-condensed CFL phase is usually called CFL-K 0 and will be
discussed in the next subsection, Sect. 4.2.1.

• The color gauge group is completely broken. While spontaneous breaking of a
global group leads to Goldstone bosons, spontaneous breaking of a gauge group
leads to masses for the gauge bosons. Here, all gluons acquire a Meissner mass,
just as the photon acquires a Meissner mass in an electronic superconductor.
A nonzero Meissner mass for a gauge boson is the field-theoretical way of saying
that there is a Meissner effect, i.e., that the magnetic field can penetrate the super-
conductor only up to a certain penetration depth. The inverse of this penetration
depth corresponds to the Meissner mass. In the CFL phase, one linear combi-
nation of a gluon and the photon remains massless. In other words, there is an
unbroken U (1)Q̃ ⊆ SU (3)c+L+R , generated by Q̃ which is a linear combination
of the original charge generator Q and the eighth gluon generator T8 (if you have
done Problem 4.2 you can easily show this and determine the exact form of the
linear combination). This phenomenon is also called rotated electromagnetism.
Since the admixture of the gluon to the new gauge boson is small, one may say
that the CFL phase is a color superconductor but no electromagnetic supercon-
ductor. This is of relevance for compact stars since it implies that the CFL phase
does not expel magnetic fields.

• The CFL phase is a superfluid since it breaks the baryon number conservation
group U (1)B . This is important since this is an exact symmetry, even at lower
densities where finite quark masses become important. Therefore, there is always
one exactly massless Goldstone mode in the CFL phase.
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4.2.1 Kaon Condensation in CFL Quark Matter

We have pointed out that chiral symmetry is not only broken in the hadronic phase,
but also in CFL. This is by itself an interesting fact since it means that in QCD
chiral symmetry is spontaneously broken at very low and very high densities. How
about the region in between? This is unknown, but the possibility remains that chiral
symmetry is, at small temperatures, broken for all densities. Since the symmetry
breaking patterns of nuclear matter and CFL are identical (note that in a neutron
superfluid also the U (1)B is broken), this implies that possibly there is no real phase
transition at moderate densities and small densities in the QCD phase diagram. In
Fig. 1.1 this corresponds to the possibility that the “non-CFL” region is absent, at
least at T = 0.

Now let us use the chiral symmetry breaking of CFL for a concrete calculation.
Since in the CFL phase all (quasi)fermions acquire energy gaps of at least Δ –
whose magnitude we compute from first principles in Sect. 4.3 – the physics of the
CFL phase at temperatures smaller than Δ is determined by the pseudo-Goldstone
modes associated to chiral symmetry breaking (and the exact Goldstone mode from
breaking of U (1)B which we do not discuss here). As we discuss below, Δ can
be expected to be of the order of 10 MeV at densities present in compact stars.
This is large enough to make fermionic excitations in a possible CFL phase in a star
essentially irrelevant. Therefore, for astrophysical applications, the discussion of the
physical properties of the Goldstone modes is crucial.

In the context of kaon condensation in nuclear matter, Sect. 3.3, we have used
an effective theory for the chiral field U and its interactions with nucleons. Also for
the mesons in CFL we can write down such a theory. In this case, the chiral field is
given by

Σ = φ
†
LφR , (4.42)

where φL and φR are the 3 × 3 matrix order parameters in the left- and right-handed
sector. In our above discussion we have not distinguished between φL and φR since
in “pure” CFL we have φL = φR = 1. For unitary 3 × 3 matrices φL and φR ,
Σ is unitary, Σ ∈ U (3). It thus contains 9 degrees of freedom, one of which one
usually ignores since it corresponds to the η′ which is heavy due to the explicitly
broken U (1)A. Eight degrees of freedom remain, Σ ∈ SU (3), and we can identify
them as pions, kaons etc. just like in hadronic matter, see Eq. (3.67). Despite the
similarities, there is an important difference to hadronic matter: as one can see from
the definition of the chiral field (4.42), a meson in CFL is composed of two fermions
and two fermion holes (each φ in Eq. (4.42) represents a diquark). For example, a
neutral kaon should be viewed as an excitation K 0 ∼ ūs̄du. Note that this “CFL
kaon” has the same quantum numbers as the “usual kaon”, composed of a particle
and an antiparticle, K 0 ∼ s̄d. Hence, if you want to construct a CFL kaon from a
usual kaon you need to replace s → d̄ū and d → ūs̄. This identification reflects
the anti-triplet representation in Eq. (4.24). As a consequence, the meson masses
in CFL are ordered inversely compared to the usual mesons. To see this, first note
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that the quark flavors (u, d, s), ordered with increasing mass, mu < md < ms , have
the anti-triplet counterpart (d̄ s̄, ūs̄, ūd̄). Here the masses (squared) have become
ordered in the opposite way, mdms > mums > mumd . Therefore, in nuclear matter
(and ignoring finite density effects), mπ0 < mK 0 because mπ0 ∝ mu + md and
mK 0 ∝ ms + md , whereas in CFL mK 0 < mπ0 because m2

K 0 ∝ mumd + mums and

m2
π0 ∝ mdms + mums . We shall verify the form of the kaon mass in CFL below

within the effective theory.
The effective Lagrangian for mesons in CFL is given by

L = f 2
π

4
Tr
[
∇0Σ∇0Σ

† − v2
π∂iΣ∂iΣ

†
]

+ a f 2
π

2
det M Tr

[
M−1(Σ + Σ†)

]
,

(4.43)
with

∇0Σ ≡ ∂0Σ + i[A,Σ] , A ≡ − M2

2μ
, (4.44)

where M = diag(mu,md ,ms) is the quark mass matrix. The matrix A enters the
theory as the temporal component of a gauge field; it plays the role of an effec-
tive chemical potential for the field Σ . We shall see below how this translates into
effective chemical potentials for the neutral and charged kaons.

The original works where this Lagrangian has been proposed are Refs. [8, 9].
There you can find detailed explanations about the structure of the effective
Lagrangian and its differences to the effective meson Lagrangian for hadronic mat-
ter (3.70). Comparing with Eq. (3.70) we see that in CFL we do not have a term
linear in the quark masses, rather only quadratic, M−1det M ∝ m2 (and higher even
powers which we have neglected). We also have different coefficients in front of
the temporal and spatial part of the kinetic term, originating from the breaking of
Lorentz invariance in a medium, vπ = 1/

√
3. As for the hadronic phase, there

are two constants fπ and a. This reminds us of the nature of effective theories
like the ones given by Eqs. (3.70) and (4.43): they are expected to give at least a
qualitatively correct description even beyond the regime where the theory can be
tested experimentally or from first-principle calculations. The reason is that they are
almost entirely determined by symmetries. Only the coefficients have to be taken
from the experiment or an underlying microscopic theory. The former is done in the
effective theory of the hadronic phase. The latter, namely fixing the constants fπ
and a from perturbative QCD, is done for the effective theory of CFL. In particular,
one can expect that, if CFL is the ground state of dense quark matter at densities
relevant for compact stars, the effective theory is a powerful tool to compute the
phenomenology of a potential quark core of the star.

Although terms of higher order in the fields and the mass matrix have already
been neglected in Eq. (4.43), the Lagrangian still looks complicate. The meson fields
θa appear in the exponent of Σ ,

Σ = eiθaλa/ fπ , (4.45)
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with the Gell-Mann matrices λa , and thus they appear to all orders even in the given
truncated theory. Let us first rewrite the Lagrangian by abbreviating Q ≡ θaλa/ fπ
such that

Σ = ei Q = cos Q + i sin Q . (4.46)

Then, the various terms of the Lagrangian become

Tr
[
∂0Σ∂0Σ

†
]

= Tr
[
(∂0 cos Q)2 + (∂0 sin Q)2

]
, (4.47a)

Tr
[
∂iΣ∂iΣ

†
]

= Tr
[
(∇ cos Q)2 + (∇ sin Q)2

]
, (4.47b)

Tr
[
[A,Σ][A,Σ]†

]
= 2Tr

[
A2−(A cosQ)2−(A sinQ)2

]
,(4.47c)

iTr
[
−∂0Σ [A,Σ]† + [A,Σ] ∂0Σ

†
]

= 2iTr [(∂0 cos Q) [A, cos Q]

+ (∂0 sin Q) [A, sin Q]] , (4.47d)

and thus

L = f 2
π

2
Tr
[

A2 − (A cos Q)2 − (A sin Q)2 + 2a(det M)M−1 cos Q
]

+ f 2
π

4
Tr
[
(∂0 cos Q)2 + (∂0 sin Q)2 − v2

π

[
(∇ cos Q)2 + (∇ sin Q)2

]]

+ i
f 2
π

2
Tr[(∂0 cos Q)[A, cos Q] + (∂0 sin Q)[A, sin Q]] . (4.48)

Let us first interpret Q as a constant background, i.e., as the meson condensate,
and neglect the fluctuations. This will allow us to compute the values of the vari-
ous condensates at zero temperature. In general, all mesons may condense and the
parameters of the theory determine which of the condensates becomes nonzero. We
recall from the above discussion that we expect the kaons, not the pions, to be the
lightest mesons in CFL. Therefore, let us simplify Q by setting all fields except the
kaon fields to zero,

Q =
7∑

a=4

φaλa =
⎛
⎝

0 0 φ4 − iφ5
0 0 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 0

⎞
⎠ , (4.49)

with the dimensionless condensates φa ≡ θa/ fπ . With this ansatz we shall be able to
construct a zero-temperature phase diagram that contains regions of no condensates,
charged kaon condensates, neutral kaon condensates, and possibly coexistence of
both. This is exactly the same ansatz as we have made in Sect. 3.3.3 for kaon con-
densation in nuclear matter, see Eq. (3.80). We can thus follow the steps below
Eq. (3.80) to obtain
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cos Q = 1 − Q2

φ2
(1 − cosφ) , (4.50)

and

sin Q = Q

φ
sinφ , (4.51)

where

φ2 ≡ φ2
4 + φ2

5 + φ2
6 + φ2

7 . (4.52)

Since we assume our condensates to be constant in time and space, only the first
line of the Lagrangian (4.48) survives. The tree-level zero-temperature free energy
is the negative of this Lagrangian and becomes

U = f 2
π

2
Tr

[
2

1 − cosφ

φ2

(
a(det M)M−1 Q2 − A2 Q2

)

+ (1 − cosφ)2

φ4
(AQ2)2 + sin2 φ

φ2
(AQ)2

]
, (4.53)

where we have subtracted the “vacuum” contribution

UCFL = U (Σ = 1) = − f 2
πa det M Tr

[
M−1

]
, (4.54)

such that the state without kaon condensates, i.e., the pure CFL state has free energy
U = 0. With the definitions of the matrices A and Q in Eqs. (4.44) and (4.49), the
notations

φ2
K + ≡ φ2

4 + φ2
5 , φ2

K 0 ≡ φ2
6 + φ2

7 , (4.55)

and abbreviating A = diag(a1, a2, a3), the various traces are

Tr
[
a(detM)M−1 Q2 − A2 Q2

]
=
(

m2
K + − μ2

K +
)
φ2

K + +
(

m2
K 0 − μ2

K 0

)
φ2

K 0

−2a3

(
a1φ

2
K + + a2φ

2
K 0

)
, (4.56a)

Tr

[(
AQ2

)2
]

=
(

a1φ
2
K + + a2φ

2
K 0

)2 + a2
3φ

4 , (4.56b)

Tr
[
(AQ)2

]
= 2a3

(
a1φ

2
K + + a2φ

2
K 0

)
, (4.56c)

where we have defined the kaon chemical potentials and masses

μK + ≡ m2
s − m2

u

2μ
, μK 0 ≡ m2

s − m2
d

2μ
, (4.57a)

m2
K + ≡ amd(ms + mu) , m2

K 0 ≡ amu(ms + md) . (4.57b)
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It will become clear below that these quantities really act as masses and chemical
potentials for the kaons. For simplicity we have omitted the electric charge chemical
potential in the Lagrangian which would have appeared in μK + as an additional
contribution. Inserting Eqs. (4.56) into Eq. (4.53), we can write the free energy as

U (φ1, φ2)

f 2
π

= (1 − cosφ)

[(
m2

1 − μ2
1

) φ2
1

φ2
+
(

m2
2 − μ2

2

) φ2
2

φ2

]

+1

2
(1 − cosφ)2

(
μ1

φ2
1

φ2
+ μ2

φ2
2

φ2

)2

. (4.58)

Here and in the following we use, for notational convenience, the subscript 1 for
K + and 2 for K 0. To understand the expression for the free energy we consider the
limit case of small condensates, θi � fπ , i.e., φi = θi/ fπ � 1 for i = K +, K 0.
Then we can expand U (φ1, φ2) up to fourth order in the condensates to obtain

U
(
θ2

1 , θ
2
2

)
� m2

1 − μ2
1

2
θ2

1 + m2
2 − μ2

2

2
θ2

2

+β1

4
θ4

1 + β2

4
θ4

2 + α

4
θ2

1 θ
2
2 , (4.59)

with

βi ≡ 4μ2
i − m2

i

6 f 2
π

(
i = K +, K 0

)
, α ≡ β1 + β2

2
− (μ1 − μ2)

2

4 f 2
π

. (4.60)

We have thus reduced the effective theory to a two-component φ4 theory, cf.
Eq. (A.18) in Appendix A.1, with effective coupling constants βi for the self-
coupling of the kaons and an effective coupling constant α for the interaction
between charged and neutral kaons.

We may come back to the full free energy (4.58) to find the ground state of the
system for arbitrary chemical potentials μ1, μ2. To this end, one has to minimize
the free energy through the equations

∂U

∂φ1
= ∂U

∂φ2
= 0 . (4.61)

By construction, the free energy of the CFL state without kaon condensation, φ1 =
φ2 = 0, is given by U = 0. If one of the condensates vanishes, say φ2 = 0, one of
the equations (4.61) is automatically fulfilled, and the other one becomes

0 = 1

f 2
π

∂U

∂φ1

∣∣∣∣
φ2=0

= sinφ1

(
m2

1 − μ2
1 cosφ1

)
. (4.62)
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This has a nontrivial solution for m2
1 < μ2

1,

cosφ1 =

⎧
⎪⎪⎨
⎪⎪⎩

1 for m2
1 > μ2

1

m2
1

μ2
1

for m2
1 < μ2

1

, (4.63)

and the free energy density becomes

U (φ2 = 0) =

⎧⎪⎪⎨
⎪⎪⎩

0 for m2
1 > μ2

1

− f 2
π

(
m2

1 − μ2
1

)2
2μ2

1

for m2
1 < μ2

1

. (4.64)

By symmetry, we find the same solution for φ2 if we set φ1 = 0. Equating the free
energies of the two phases φ1 = 0, φ2 �= 0 and φ1 �= 0, φ2 = 0 one finds the
condition for coexistence of two condensates,

μ2
2

(
μ2

1 − m2
1

)2 = μ2
1

(
μ2

2 − m2
2

)2
. (4.65)

This condition can also be obtained by assuming two nonvanishing condensates in
Eq. (4.61). As a result we obtain the phase diagram shown in Fig. 4.2, where we
restrict ourselves to μ1, μ2 > 0 without loss of generality.

What are the values of the kaon chemical potentials in the real world? In other
words, where in the phase diagram of Fig. 4.2 does a compact star sit? Let us first see

Fig. 4.2 Zero-temperature phase diagram for kaon condensation in the μK + –μK 0 -plane. No con-
densation occurs if the chemical potential is smaller than the meson mass. Coexistence of the two
condensates is only possible along the (solid) line that separates the CFL-K 0 from the CFL-K +
phase. This line is given by Eq. (4.65) and marks a first order phase transition. For large chemical
potentials, it approaches the line μK + = μK 0 . The (dashed) lines separating either of the two
meson-condensed phases from the pure CFL phase are second order phase transition lines. In the
condensed phases, the condensate and free energy are given by Eqs. (4.63) and (4.64), respectively
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whether in a star we can expect the kaon chemical potentials to be larger than their
mass, i.e., whether kaon condensation is possible. As discussed above, for quanti-
tative predictions of the effective theory we rely on the results for the constants fπ
and a at asymptotically large densities and their extrapolation down to densities in
a compact star. This extrapolation yields

f 2
π = 21 − 8 ln 2

18

μ2

2π2
� (100 MeV)2 , a = 3Δ2

π2 f 2
π

� 0.03 , (4.66)

where we used a quark chemical potential μ � 500 MeV and a fermionic energy
gap Δ � 30 MeV. Then, from Eqs. (4.57) we conclude that both kaon masses are
of the order of mK + � mK 0 � (a mlight ms)

1/2 � 5 MeV, where we used a quark
mass for u and d quarks mlight � 5 MeV and a strange quark mass ms � 150 MeV.
The kaon chemical potential then is μK + � μK 0 � m2

s/(2μ) � 20 MeV. This
suggests that the interior of the star sits outside the rectangle given by the dashed
lines in Fig. 4.2, i.e., if there is a color-flavor locked core in a compact star it is
likely to be kaon-condensed CFL matter rather than “pure” CFL matter (we shall
confirm this conclusion below for nonzero temperatures). Does this matter contain
a charged or a neutral kaon condensate? Firstly, the slightly heavier d quark com-
pared to the u quark makes the K + slightly heavier than the K 0. This asymmetry
is taken into account in Fig. 4.2. Moreover, the electric charge of a potential K +
condensate would require the presence of electrons to neutralize the system, which
further disfavors the charged kaon condensate. We thus expect the CFL-K 0 phase
to be the most likely meson-condensed phase in CFL.

As a second application of the effective theory for mesons in CFL let us com-
pute an estimate of the critical temperature of (neutral) kaon condensation. This is
important to answer the question: if there is CFL matter in a compact star and if
there is kaon condensation at zero temperature, at which temperature (i.e., at which
point in the life of the star) does condensation set in?

The full temperature-dependent theory defined by the effective Lagrangian is
very complicated. We therefore expand the Lagrangian (4.48) up to fourth order in
the matrix-valued field Q to obtain

L= f 2
π

2
Tr

[(
A2 − a(det M)M−1

)(
Q2 − A2 Q4

12

)
− (AQ)2 −

(
AQ2

)2
4

+
(

AQ2
)

Q2

3

]

+ f 2
π

4
Tr
[
(∂0 Q)2 − v2

π (∇Q)2 + 2i(∂0 Q)[A, Q]
]
, (4.67)

where we have neglected terms of fourth order in Q which contain derivatives such
as Tr[(Q∂0 Q)2] etc, and where we have dropped the contribution constant in Q,
which serves to normalize the free energy of the pure CFL state to zero, see remark
below Eq. (4.53). Next, one has to separate the condensate from the fluctuations,
as demonstrated in Appendix A.1. The resulting Lagrangian has the same structure
as given in the appendix for the φ4 model, see Eq. (A.17): a tree-level potential;
terms of second order in the fluctuations which define the tree-level propagator;
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terms cubic in the fluctuations which correspond to interactions due to the pres-
ence of the condensate; and finally terms quartic in the fluctuations. Here we do not
discuss the explicit structure of these terms in general, for details you may consult
Ref. [10]. We rather restrict ourselves again to the kaon degrees of freedom. As a
further simplification, we set the charged kaon condensate to zero, θ4 = θ5 = 0
(but keep the charged kaon fluctuations). This is motivated by the above discussion
about the more favorable neutral kaon condensate. For the neutral kaon condensate
we choose, without loss of generality, a direction in the degeneracy space of the
condensate by setting θ7 = 0, and we denote θ ≡ θK 0 = θ6. The tree-level potential
from Eq. (4.59) then simply becomes

U (θ) = m2
2 − μ2

2

2
θ2 + β2

4
θ4 . (4.68)

The kaon sector of the inverse tree-level propagator is block diagonal,

D−1
0 =

(
D−1

01 0
0 D−1

02

)
, (4.69)

where

D−1
01 =

(−K 2 + m2
1 − μ2

1 + αθ2 −2iμ1k0

2iμ1k0 −K 2 + m2
1 − μ2

1 + αθ2

)
, (4.70a)

D−1
02 =

(−K 2 + m2
2 − μ2

2 + 3β2θ
2 −2iμ2k0

2iμ2k0 −K 2 + m2
2 − μ2

2 + β2θ
2

)
, (4.70b)

with the abbreviation K 2 ≡ k2
0 − v2

πk2. The verification of this form of the kaon
tree-level propagator is left as an exercise, see Problem 4.3. Analogously to the
calculation in the appendix, we obtain the kaon dispersion relations. They are given
by the poles of the propagator D0, which are the zeros of the determinant of the
inverse propagator D−1

0 . The dispersion for the charged kaon is

ε±
1 (k) =

√
v2
πk2 + m2

1 + αθ2 ∓ μ1 . (4.71)

We see that the K 0 condensate gives a contribution to the mass of the K +. For the
neutral kaon we obtain

ε±
2 (k) =

√
E2

k + μ2
2 ∓

√
4μ2

2 E2
k + δM4 , (4.72)

where

Ek ≡
√
v2
πk2 + m2

2 + 2β2θ2 , δM2 = β2θ
2 . (4.73)
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Since kaon condensation breaks a global symmetry of the system, namely the U (1)
associated to conservation of strangeness, we expect a Goldstone mode. (Notice the
twofold condensation process: due to the condensation of quark Cooper pairs, chiral
symmetry is broken and pseudo-Goldstone bosons appear in the system; on top of
that, these pseudo-Goldstone modes – here the neutral kaons – condense themselves,
breaking the global symmetry further and giving rise to another Goldstone mode.)
This mode is expected to be gapless.5 To check this expectation, we first compute
the condensate from the tree-level potential (4.68). The nontrivial minimum of this
potential is

θ2 = μ2
2 − m2

2

β2
. (4.74)

This implies 4μ2
2 E2

k=0 + δM4 = (3μ2
2 − m2

2

)2
and E2

k=0 + μ2
2 = 3μ2

2 − m2
2 which

we can insert into the kaon dispersion (4.72). The result is

ε+
2 (k = 0) = 0 , (4.75)

confirming the existence of a gapless mode.
Following the calculation in the appendix, we can immediately write down the

thermodynamic potential at finite temperature,

Ω = U (θ) + T
∑

i=1,2

∑
e=±

∫
d3k
(2π)3

ln
(

1 − e−εe
i /T
)
. (4.76)

In order to extract an estimate for the critical temperature, we expand the potential
for large T ,

Ω � U (θ) − 2π2

45v3
π

T 4 +
(
α + 2β2

12v3
π

θ2 + m2
1 + m2

2 − 2(μ2
1 + μ2

2)

12v3
π

)
T 2 + . . .

=
(

m2
2 − μ2

2

2
+ α + 2β2

12v3
π

T 2

)
θ2 + β2

4
θ4

− 2π2

45v3
π

T 4 + m2
1 + m2

2 − 2(μ2
1 + μ2

2)

12v3
π

T 2 + . . . (4.77)

The T 4 term is easy to obtain and has also been discussed in Appendix A.1. For
the T 2 term we have neglected δM in the neutral kaon dispersions (4.72). Then
they assume the same form as the ones for the charged kaons (4.71) and we can

5 Due to the weak interactions this mode acquires a small energy gap in the keV range which we
neglect here.
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use the expansion for the pressure of a noninteracting Bose gas, see for instance the
appendix of Ref. [11].

We have arrived at a potential with terms constant, quadratic, and quartic in θ .
Since we assume the existence of a condensate at T = 0, we have μ2 > m2, which
we have argued to be realistic for densities in compact stars. Therefore, the quartic
term is always positive, while the quadratic term starts from a negative value at
T = 0 and becomes positive for sufficiently large temperatures. Consequently, the
nontrivial solution for the condensate ceases to exist when the coefficient in front
of the quadratic term vanishes. This yields the condition for the critical temperature
which we thus estimate to be

T 2
c � 6v3

π

μ2
2 − m2

2

α + 2β2
. (4.78)

With the definitions (4.60) we can express Tc as a function of kaon chemical poten-
tials and masses.6 Before we interpret the result we point out a problem of the
current approach. We have seen that at zero temperature, with θ(T = 0) given by
Eq. (4.74), we have ε+

2 (k = 0) = 0. At finite temperature we expect the condensate
to melt, i.e., θ(T ) < θ(T = 0) for all T . In this case, however, the excitation of the
Goldstone mode (which should remain gapless for all T < Tc due to the Goldstone
theorem) becomes imaginary if written in the form (4.72). This is clearly unphysical
and due to the approximation we have made. The solution to this problem is to set up
a more elaborate approximation scheme which evaluates the thermal kaon masses
self-consistently. This is beyond the scope of these lectures, see Ref. [10] for such a
treatment.

It turns out that our estimate of the critical temperature coincides with the self-
consistent calculation. We can therefore use Eq. (4.78) for a physical conclusion.
With the definition of the effective coupling constants α and β2 in Eq. (4.60) and
the approximate numbers for the kaon chemical potentials and masses discussed
below Eq. (4.66) we obtain Tc � 60 MeV. This is of the order of or even larger than
the critical temperature T CFL

c for CFL itself. We do not aim to compute the critical
temperature of CFL in these lectures. We simply give the (mean-field) result,

T CFL
c � 21/3 · 0.57Δ, (4.79)

where Δ is the zero-temperature gap. This relation differs by a prefactor of order
one from the relation obtained from the usual Bardeen–Cooper–Schrieffer (BCS)
theory, Tc � 0.57Δ; see remark below Eq. (4.99) for the origin of this prefactor.

6 Notice that for α+2β2 < 0 the critical temperature formally becomes imaginary, i.e., the conden-
sate apparently “refuses” to melt. This situation cannot occur for realistic parameters in our case
but is an interesting theoretical possibility. See Appendix C in Ref. [10] and references therein for
more information.
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For our present purpose it is sufficient to notice that the critical temperature in a
superconductor is typically of the same order as the zero-temperature gap. Since
Δ is also of the order of tens of MeV, we may apparently conclude that the kaon
condensate does not melt before the CFL phase itself melts. However, we need to
remember that our effective theory is only valid for temperatures smaller than the
gap Δ. Therefore, the estimated critical temperature for kaon condensation is close
to or beyond the limit of validity of our effective description. Nevertheless, as a
tentative conclusion we can say that as soon as quark matter is cold enough to be in
the CFL state, we also expect it to be cold enough for kaon condensation, provided
that the parameters are such that kaon condensation is present at zero temperature.
In other words, upon decreasing the temperature, one encounters the transition from
unpaired quark matter to CFL-K 0, not from unpaired quark matter to CFL and then
to CFL-K 0. The critical temperature we have found is larger than all temperatures
we are interested in for compact star applications. Therefore, we have learned that
the temperature inside a compact star is, for all times in the life of the star, suffi-
ciently low for the CFL-K 0 phase.

4.3 Color-Superconducting Gap from QCD

Let us now go through a true QCD calculation from first principles. Our goal is to
compute the gap Δ with perturbative methods. As explained above, this calculation
can be expected to be strictly valid only at densities much larger than present in
compact stars.

In the theoretical treatment of superconductivity one introduces charge-conjugate
fermions, which can be thought of as hole degrees of freedom. A hole is left in the
Fermi sea if you remove a fermion. One might thus say that introducing fermion
holes leads to an overcounting of the degrees of freedom because if the theory knows
about all fermions it also knows about where a fermion is missing. And indeed, we
have formally doubled the degrees of freedom. However, since in a superconductor
quasiparticles are mixtures of fermions and fermion holes, this is a necessary exten-
sion of the theory. The fermion spinors become spinors in the so-called Nambu-
Gorkov space and the fermion propagator becomes a 2 × 2 matrix in this space. The
Cooper pair condensate is taken into account in the off-diagonal elements of this
propagator, i.e., it couples fermions with holes. The inverse tree-level propagator in
Nambu–Gorkov space is

S−1
0 =

( [G+
0 ]−1 0
0 [G−

0 ]−1

)
, (4.80)

with the inverse tree-level fermion and charge-conjugate fermion propagators

[
G±

0

]−1 = γ μKμ ± μγ0 =
∑
e=±

[k0 ± (μ − ek)]γ0Λ
±e
k , (4.81)
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where

Λ±e
k ≡ 1

2

(
1 ± eγ0γ · k̂

)
(4.82)

are projectors onto positive and negative energy states. Since our QCD calculation
applies to asymptotically large densities, we can safely neglect all quark masses.
See Appendix A.2 for a derivation of the tree-level fermion propagator and its rep-
resentation in terms of energy projectors. From Eq. (4.81) we immediately get the
tree-level propagators

G±
0 =

∑
e=±

Λ±e
k γ0

k0 ± (μ − ek)
. (4.83)

The full inverse propagator S−1 is obtained from a Dyson–Schwinger equation

S−1 = S−1
0 + Σ , (4.84)

with the self-energy

Σ �
(

0 Φ−
Φ+ 0

)
. (4.85)

In principle, Σ also has nonvanishing diagonal elements which we neglect here.
The off-diagonal elements contain the gap function Δ(K ),

Φ+(K ) = Δ(K )Mγ5 , Φ−(K ) = −Δ(K )M†γ5 , (4.86)

where M specifies the color-flavor structure of the color-superconducting phase; in
the CFL phase M = J · I, see Eq. (4.29). From the Dyson–Schwinger equation
(4.84) we obtain the inverse propagator, which we formally invert to obtain the
propagator,

S =
(

G+ F−
F+ G−

)
, (4.87)

with

G± =
(
[G±

0 ]−1 − Φ∓G∓
0 Φ

±)−1
, (4.88a)

F± = −G∓
0 Φ

±G± . (4.88b)

The off-diagonal elements F± are termed anomalous propagators. They are typical
for all superconductors, see for example Ref. [12]. From their structure (4.88b)
we see that they describe the propagation of a charge-conjugate fermion that is
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converted into a fermion through the condensate (or vice versa). One can thus
think of the condensate as a reservoir of fermions and holes, and the quasiparti-
cles are not just single fermions but superpositions of states with fermion num-
ber . . . ,−5,−3,−1, 1, 3, 5, . . ..

Inserting Eqs. (4.81), (4.83), and (4.86) into Eq. (4.88a), we compute the diagonal
elements of the propagator (for simplicity we assume M† = M which is true in the
CFL phase, but may not be true in other phases),

G± =
{∑

e=±

[
k0 ± (μ − ek) − Δ2L

k0 ∓ (μ − ek)

]
Λ∓e

k γ0

}−1

, (4.89)

with L = M2, as defined for the CFL phase in Eq. (4.31). Now we write L in its
spectral representation,

L =
∑

r=1,2

λrPr , (4.90)

with λr being the eigenvalues of L , λ1 = 1, λ2 = 4, and Pr the projectors onto the
corresponding eigenstates,

P1 = − L − 4

3
, P2 = L − 1

3
. (4.91)

Obviously, these projectors are complete, P1 + P2 = 1; they are also orthogonal,
P1P2 = 0, as one can see with the help of Eq. (4.35). We obtain

G± =
{∑

e,r

[
k0 ± (μ − ek) − λrΔ

2

k0 ∓ (μ − ek)

]
PrΛ

∓e
k γ0

}−1

=
∑
e,r

[
k0 ± (μ − ek) − λrΔ

2

k0 ∓ (μ − ek)

]−1

Prγ0Λ
∓e
k

= [G∓
0 ]−1

∑
e,r

PrΛ
∓e
k

k2
0 − (εe

k,r )
2
, (4.92)

with

εe
k,r =

√
(ek − μ)2 + λrΔ2 . (4.93)

The poles of the propagator are k0 = ±εe
k,r , i.e., εe

k,r are the dispersion relations of
the quasiparticles (e = +) and quasiantiparticles (e = −). We have thus confirmed
Eq. (4.30), in particular we now understand why the eigenvalues of L appear in
the excitation energies. Note that the structure of the dispersion relations is thus
determined entirely by the color-flavor (and Dirac) structure of the order parameter,
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and thus ultimately by the symmetry breaking pattern. Only the calculation of the
magnitude of Δ goes beyond simple symmetry considerations and depends on the
form of the interaction between the fermions.

Using the result (4.92) for G± and Eq. (4.88b), one easily obtains the anomalous
propagators,

F± = ±ΔMγ5

∑
e,r

PrΛ
∓e
k

k2
0 − (εe

k,r )
2
. (4.94)

The gap equation is a self-consistent equation for the off-diagonal elements of the
self-energy Σ . We shall not discuss the detailed derivation of the gap equation (see
Sect. IV.A in Ref. [6] for this derivation). The gap equation reads

Φ+(K ) = g2 T

V

∑
Q

γ μT T
a F+(Q)γ νTb Dab

μν(K − Q) , (4.95)

where g is the QCD coupling constant, which will be our expansion parameter,
where Dab

μν is the gluon propagator, and where Ta = λa/2 (a = 1, . . . , 8) with the
Gell-Mann matrices λa . In Figs. 4.3 and 4.4 we show the self-energy and the gap
equation diagrammatically.

The first step is to transform the matrix equation (4.95) into an equation for the
scalar gap function Δ(K ). To this end, we multiply both sides of the gap equation
with γ5MΛ+

k from the right and take the trace on both sides. Furthermore, we
neglect the antiparticle contribution e = − (and denote εk,r ≡ ε+

k,r ) and use the fact

that the gluon propagator can be taken to be diagonal in color space, Dab
μν = δab Dμν .

This yields

Σ =

Fig. 4.3 Diagrammatic representation of the one-loop self-energy in Nambu–Gorkov space. Curly
lines are gluon propagators, double lines correspond to G+ (left-pointing arrow) and G− (right-
pointing arrow), single lines to G+

0 (left-pointing arrow) and G−
0 (right-pointing arrow), and the

circles are the gap matrices Φ+ (cross-hatched) and Φ− (hatched). The vertices have the form
gγ μTa with the QCD coupling g
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=
Fig. 4.4 Diagrammatic representation of the gap equation which arises as follows. On the one
hand, the one-loop self-energy is given by cutting a fermion line in the corresponding two-loop
diagram of the effective action. In Nambu–Gorkov space, this yields the matrix of four diagrams
shown in Fig. 4.3. On the other hand, the self-energy is given by Eq. (4.85). Equating these two
matrices leads to the gap equation in the off-diagonal elements. The algebraic form of the gap
equation is given in Eq. (4.95). It is a self-consistent equation for Φ+ (equivalently, one may solve
the equation for Φ−), and thus for the gap function Δ(K )

Δ(K ) = g2

24

T

V

∑
Q

∑
r

Δ(Q)

q2
0 − ε2

q,r

Tr
[
γ μγ5Λ

−
q γ

νγ5Λ
+
k

]
Tr
[
T T

a MPr TaM
]

Dμν(P)

= −g2

3

T

V

∑
Q

[
2

3

Δ(Q)

q2
0 − ε2

q,1

+ 1

3

Δ(Q)

q2
0 − ε2

q,2

]

× Tr
[
γ μγ5Λ

−
q γ

νγ5Λ
+
k

]
Dμν(P) , (4.96)

where we abbreviated P ≡ K − Q, and where we have used the results for the
color-flavor traces

Tr
[
T T

a MP1TaM
]

= 2 Tr
[
T T

a MP2TaM
]

= −16

3
. (4.97)

It is left as an exercise to verify these traces. With the gluon propagator in Coulomb
gauge,

D00(P) = D�(P) , D0i (P) = 0 , Di j = (δi j − p̂i p̂ j )Dt (P) , (4.98)

where D� and Dt are the longitudinal and transverse components, we have

Δ(K ) = g2

3

T

V

∑
Q

[
2

3

Δ(Q)

q2
0 − ε2

q,1

+ 1

3

Δ(Q)

q2
0 − ε2

q,2

]

×
[
(1 + q̂ · k̂)D�(P) − 2(1 − p̂ · q̂ p̂ · k̂)Dt (P)

]
. (4.99)

Again, it is left as an exercise to verify this result by performing the trace in Dirac
space. The two terms on the right-hand side arising from εq,1 and εq,2 are due to
the two-gap structure of CFL. Let us for simplicity ignore this structure in the fol-
lowing, i.e., we replace εq,2 by εq,1 (for more details about the QCD gap equation
for CFL, see Ref. [13]). This simplification does not change the main result which
is the dependence of the gap on the QCD coupling g. The two-gap structure has
a nontrivial effect for instance on the relation between the critical temperature and
the zero-temperature gap, see Eq. (4.79). In fact the 21/3 in that equation is actually
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(λ
2/3
1 λ

1/3
2 )1/2 where the exponents 2/3 and 1/3 are the prefactors in front of the two

fractions in Eq. (4.99).
For the sake of brevity, let us now skip a few steps in the calculation. One inserts

the specific form of the longitudinal and transverse gluon propagators (in the so-
called hard-dense loop approximation), performs the Matsubara sum and the angular
integral. Details of all these steps can be found for instance in Ref. [14], and one
obtains

Δk � g2

24π2

∫ μ+δ

μ−δ

dq
Δq

εq
tanh

εq

2T

(
ln

4μ2

3m2
g

+ ln
4μ2

M2
+ 1

3
ln

M2

|ε2
q − ε2

k |

)
.

(4.100)

Here, the three terms in parentheses arise from static electric gluons, non-static
magnetic gluons, and (Landau-damped) soft magnetic gluons, respectively. The last
of these terms is responsible for the leading behavior of the gap which will turn
out to be different from the usual BCS behavior in electronic superconductors.
The reason is the existence of a long-range interaction mediated by the magnetic
gluons in QCD for which there is no analogue in the interaction of electrons in a
metal. We have defined m2

g ≡ Nf g2μ2/(6π2) (Nf being the number of flavors), and

M2 ≡ (3π/4)m2
g , and we have restricted the momentum integral to a small vicinity

around the Fermi surface, q ∈ [μ − δ, μ + δ] (δ � μ), where we expect the gap
function Δq to be peaked. The three logarithms can be combined to obtain

Δk = ḡ2
∫ δ

0
d(q − μ)

Δq

εq

1

2
ln

b2μ2

|ε2
q − ε2

k |
, (4.101)

with

ḡ ≡ g

3
√

2π
, b ≡ 256π4

(
2

N f g2

)5/2

, (4.102)

and where we have taken the zero-temperature limit tanh εq
2T → 1. The logarithm

can be approximated by

1

2
ln

b2μ2

|ε2
q − ε2

k |
� Θ(k − q) ln

bμ

εk
+ Θ(q − k) ln

bμ

εq
. (4.103)

Moreover, we define the new integration variable

y ≡ ḡ ln
2bμ

q − μ + εq
, (4.104)

and abbreviate

x ≡ ḡ ln
2bμ

k − μ + εk
, x∗ ≡ ḡ ln

2bμ

Δ
, x0 ≡ ḡ ln

bμ

δ
, (4.105)
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where Δ is the zero-temperature value of the gap at the Fermi surface, Δ ≡ Δq=μ.
We have

dy = − ḡ

εq
d(q − μ) , εq = bμe−y/ḡ

[
1 + Δ2

q

(q − μ + εq)2

]
. (4.106)

With the latter relation we approximate ln(bμ/εq) � y/ḡ, ln(bμ/εk) � x/ḡ to
obtain

Δ(x) = x
∫ x∗

x
dy Δ(y) +

∫ x

x0

dyy Δ(y) . (4.107)

We can rewrite this integral equation as a second-order differential equation,

dΔ

dx
=
∫ x∗

x
dy Δ(y) ⇒ d2Δ

dx2
= −Δ(x) . (4.108)

This equation is solved by

Δ(x) = Δ cos(x∗ − x) , (4.109)

such that the value of the gap at the Fermi surface (which corresponds to x = x∗)
is Δ, and such that the first derivative of the gap at the Fermi surface vanishes,
since the gap peaks at the Fermi surface. To compute the value of the gap at the
Fermi surface, we insert the solution (4.109) back into the gap equation (4.107) and
consider the point x = x∗,

Δ = Δ

∫ x∗

x0

dyy cos(x∗ − y) = Δ
[
cos(x∗ − y) − y sin(x∗ − y)

]y=x∗
y=x0

= Δ
[
1 − cos(x∗ − x0) + x0 sin(x∗ − x0)

]
. (4.110)

Since x0 is of order ḡ, we approximate cos(x∗−x0) = cos x∗ cos x0+sin x∗ sin x0 �
cos x∗ + x0 sin x∗, sin(x∗ − x0) = sin x∗ cos x0 − cos x∗ sin x0 � sin x∗ − x0 cos x∗,
and thus

Δ � Δ(1 − cos x∗) . (4.111)

Hence, cos x∗ � 0 and thus

Δ = 2bμ exp

(
− 3π2

√
2g

)
. (4.112)

This important result, first derived in Ref. [15], shows that the color-superconduct-
ing gap is parametrically enhanced compared to the BCS gap in conventional
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superconductors. In BCS theory there is a contact interaction instead of gluon
exchange, and the resulting gap equation has the form

Δ ∝ g2
∫ δ

0
d(q − μ)

Δ

εq
. (4.113)

Here the gap does not depend on momentum and one obtains Δ ∝ exp(−const/g2),
i.e., the coupling appears quadratic in the denominator of the exponential. This is
in contrast to the color-superconducting gap (4.112) where the coupling appears
linear in the denominator of the exponential. As mentioned above, this is due to the
long-range interaction from magnetic gluons. For more details and a more general
solution of the QCD gap equation see Sect. IV in Ref. [6] and references therein.

The solution of the QCD gap equation is a weak-coupling result and thus only
valid at very large chemical potentials where the QCD coupling is sufficiently small.
It is nevertheless interesting to extrapolate this result to larger couplings. Of course
one should keep in mind that this extrapolation has no theoretical justification. We
show the gap as a function of the coupling in Fig. 4.5. We see the exponentially small
gap at small coupling and observe a maximum of the gap at a coupling of about
g � 4.2. For compact stars we make the following rough estimate. According to the
two-loop β-function (which should not be taken too seriously at these low densities),
the coupling at μ = 400 MeV is g � 3.5. From Fig. 4.5 we then read off Δ �
80 MeV. However in our derivation of the result we have ignored a subleading effect
which yields an additional prefactor � 0.2. Therefore, we can estimate the color-
superconducting gap for compact star densities to be of the order of Δ ∼ 10 MeV.

This result suggests that the critical temperature of color superconductivity is
also of the order of Tc ∼ 10 MeV, cf. Eq. (4.79). Remember that compact stars
have temperatures well below that value (only in the very early stages of the life
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Fig. 4.5 Color-superconducting gap Δ over quark chemical potential μ as a function of the QCD
coupling g. The curve shows the result from Eq. (4.112) with N f = 2, predicting a weak-coupling
behavior Δ/μ ∝ exp(−const/g). The values of Δ/μ for large coupling is a simple (and in princi-
ple unreliable) extrapolation of the weak-coupling result
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of the star, temperatures around 10 MeV are reached). This suggests that color
superconductors are viable candidates for the matter inside the star. More precisely,
if there is deconfined quark matter inside the star, it is very likely that it is in a
color-superconducting state.

We conclude this chapter about color superconductivity by noticing that, besides
the strong-coupling nature, other interesting questions arise at lower densities. We
have seen in Sect. 2.2.2, that in unpaired quark matter the Fermi momenta of up,
down, and strange quarks split apart, see Fig. 2.1. This is due to the nonzero strange
quark mass and the conditions of neutrality and weak equilibrium. In our discussion
of superconductivity we have always assumed that the fermions that form Cooper
pairs have identical Fermi momenta. This is true in the region of asymptotically
large densities where the strange quark mass can be neglected. It is not true, how-
ever, at lower densities. The different Fermi momenta rather impose a “stress” on
the pairing.7 It is a quantitative question whether the pairing gap is large enough
to overcome this stress. Roughly speaking, if the gap is larger than the mismatch in
Fermi momenta, the usual pairing is still possible. It is therefore conceivable that the
CFL phase persists down to densities where the transition to hadronic matter takes
place. If the gap is too small, however, or the mismatch too large, Cooper pairing in
the conventional way is not possible anymore. There are several versions of uncon-
ventional pairing which may take over and constitute one or several phases between
the CFL phase at high densities and hadronic matter. Some of them break rotational
invariance and may lead to nodes of the gap in certain directions in momentum space
as discussed in the context of the specific heat in Sect. 4.1. Others even break transla-
tional invariance and exhibit crystalline structures. All of the unconventional phases
have in common that there is less, and less symmetric, pairing than in the CFL phase.
There is less pairing because the CFL phase is the only color superconductor where
all quarks are gapped in all directions in momentum space. There is less symmetric
pairing because the CFL phase is the color superconductor with the largest residual
symmetry group. In the phase diagram of Fig. 1.1 all color superconductors other
than CFL are collectively denoted by non-CFL. From what we just said it is clear
that this region of the phase diagram may either be completely absent or, if present,
may itself contain several phase transition lines separating different color super-
conductors. More details about stressed pairing in quark matter and unconventional
color superconductors can be found in Ref. [6].

In summary, we emphasize that not only the strong-coupling nature but also
the less symmetric situation (due to the finite strange quark mass) complicates our
understanding of quark matter in compact stars. This supports the theme of these
lectures that we need to compute properties of candidate phases and check them

7 Cooper pairing with mismatched Fermi momenta is an interesting general phenomenon and not
only relevant for quark matter, but also in condensed matter physics and atomic physics. See for
instance Ref. [16] where mismatched pairing of fermionic atoms is investigated experimentally in
an optical trap.
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for their compatibility with astrophysical observations. In the following section we
shall turn to one of these properties, namely the neutrino emissivity.

Problems

4.1 Specific heat for anisotropic superfluid
Compute the low-temperature behavior of the specific heat for a gap function with
line nodes, i.e., instead of Eq. (4.18), take Δ → Δ| cos θ | and apply analogous
approximations as for the case of point nodes.

4.2 Symmetries of CFL
Show that from the structure of the CFL order parameter given in Eq. (4.27) it
follows that the CFL symmetry breaking pattern is given by Eq. (4.28). Hints:
it is sufficient to treat the chiral group SU (3)L × SU (3)R as one single flavor
group SU (3)f . A color-flavor transformation (U, V ) ∈ SU (3)c × SU (3)f with

U = exp(iφc
aTa), V = exp(iφ f

a Ta) acts on the order parameter as (U, V )(J · I) =
(U J AU T ) (V IAV T ). One then has to show that only SU (3)c+ f transformations
leave the order parameter invariant.

4.3 Kaon propagator
Derive the inverse tree-level propagator for neutral and charged kaons given in
Eqs. (4.69) and (4.70) from the Lagrangian (4.67).
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Chapter 5
Neutrino Emissivity and Cooling of the Star

We have seen in Sect. 2 that measuring mass and radius of a compact star is not
sufficient to deduce the matter composition inside the star; it is neither conclusive
for a distinction between nuclear matter and quark matter nor between unpaired
quark matter and color-superconducting quark matter. We now turn to an observable
which is more sensitive to the microscopic properties of dense matter, namely the
temperature of the star. More precisely, its cooling curve, i.e., the temperature as a
function of the age of the star. Approximately one minute after the star is born, the
temperature has cooled below 1 MeV and the star becomes transparent for neutrinos.
Consequently, neutrinos (and antineutrinos) which are produced in the star can leave
the system and carry away energy. Neutrino emission is thus the dominant cooling
mechanism of a compact star in about the first million years of its life. After that,
photon emission takes over. We shall not be concerned with this late regime here.

A very detailed review about neutrino emissivity in nuclear matter is Ref. [1]. If
you are interested in a shorter review, also discussing quark matter, I recommend
Ref. [2]. Before turning to the microscopic calculation of the neutrino emissivity εν ,
let us discuss its importance for the cooling curves. First of all, as already discussed
briefly in Sect. 4.1 it is not only the emissivity which is important for the cooling.
Once you know how much energy per time and volume is carried away, you need
to know how this affects the temperature of the star. Hence you also need to know
the specific heat. The specific heat cV is a thermodynamic quantity and thus much
easier to compute than the neutrino emissivity. We have done so in Sect. 4.1 and
have seen that superconductivity has a huge effect on cV , namely, due to the energy
gap, cV is exponentially suppressed at sufficiently small temperatures. We shall see
that superconductivity has a similar effect on the neutrino emissivity. Besides εν and
cV , also the heat conductivity is important for the cooling behavior. Most forms of
dense matter are very good heat conductors, such that the star becomes isothermal.
As a consequence, in a realistic star which may have layers of different phases of
dense matter, cooling tends to be dominated by the phase with the highest emissivity
and the phase with the highest specific heat.

Schmitt, A.: Neutrino Emissivity and Cooling of the Star. Lect. Notes Phys. 811, 95–111 (2010)
DOI 10.1007/978-3-642-12866-0_5 c© Springer-Verlag Berlin Heidelberg 2010
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5.1 Urca Processes in Nuclear Matter

In Fig. 5.1 we show some data and schematic comparison with calculations for the
cooling curves. We see that there are different classes of processes which lead to
significantly different cooling scenarios. The most efficient process is the so-called
direct Urca process which leads to a very fast cooling.1 In nuclear matter, the direct
Urca processes are

n → p + e + ν̄e , p + e → n + νe . (5.1)

We have discussed these processes in the context of β-equilibrium, where they serve
to establish the relation μp + μe = μn , assuming that neutrinos and antineutri-
nos escape from the star, μν = 0. Here we are interested in the question how
both processes contribute to the neutrino emissivity. Since it does not matter for
the energy balance whether neutrinos or antineutrinos are emitted, both processes
contribute – in chemical equilibrium – equally to the emissivity. For the neutron,
proton, and electron, the dominant contribution in momentum space to the processes
comes from the momenta close to the Fermi momentum. The neutrino momen-
tum is of the order of the temperature T which can be neglected compared to the
Fermi momenta. Therefore, momentum conservation for both processes in Eq. (5.1)
reads

kF,n = kF,p + kF,e . (5.2)

In other words, the Fermi momenta kF,n , kF,p, and kF,e must form a triangle. For
this triangle to exist, the triangle inequality has to be fulfilled,

kF,n < kF,p + kF,e . (5.3)

We know that in a neutral system we have kF,p = kF,e, and thus the triangle inequal-
ity becomes

kF,n < 2kF,p . (5.4)

Consequently, with ni ∝ k3
F,i (i = n, p),

nn < 8n p ⇒ n p

nB
>

1

9
, (5.5)

i.e., the proton fraction has to be larger than 11%. We have seen in Sect. 2.1 that
this is not the case for noninteracting nuclear matter. Interactions can change this,

1 This process is as efficient in sucking energy out of the star as the Casino de Urca in Rio de
Janeiro is in sucking money out of the pockets of the gamblers. Hence the name.
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Fig. 5.1 Effective surface temperature Ts and luminosity Ls vs. age of compact stars, taken from
Ref. [3]. Observed values are compared with different cooling scenarios, each represented by a
band that reflects the large uncertainties in the microscopic calculations

especially for very large densities. At lower densities, this means that the direct Urca
process is strongly suppressed in nuclear matter.

This brings us to a second class of processes which are less efficient than the
direct Urca process, but may be the most efficient ones to emit neutrinos when
the direct Urca process is suppressed. Momentum conservation can be fulfilled by
adding a spectator neutron or proton. This is the so-called modified Urca process,

N + n → N + p + e + ν̄e , N + p + e → N + n + νe , N = n, p. (5.6)

As can be seen from Fig. 5.1, this process typically results in a much slower cooling.
The cooling is thus very sensitive to the proton fraction of nuclear matter, especially
around the threshold of 11%. In other words, this sensitivity provides a good check
on the equation of state. Phenomenological models with equations of state which
predict the proton fraction to be above this threshold can be excluded since the star
would cool too fast. There are several other neutrino emissivity processes in nuclear
matter which we shall not discuss here. Some of these processes happen only with
superconducting protons and superfluid neutrons, and are due to constant formation
of Cooper pairs.
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5.2 Direct Urca Process in Quark Matter

The direct Urca processes in quark matter are

d → u + e + ν̄e , u + e → d + νe , (5.7a)

s → u + e + ν̄e , u + e → s + νe . (5.7b)

These processes obviously require the availability of single quarks. If quarks are
paired in Cooper pairs one first has to break a pair. This costs energy. Therefore,
in a phase where all quarks are paired (gapped), such as the CFL phase, we can
expect the direct Urca process to be strongly suppressed. As for the specific heat,
we expect an exponential suppression at temperatures small compared to the gap
(at larger temperatures, but still below the color-superconducting phase transition,
thermal energy is available to break the pairs). Recall that the gap is of the order of
10 MeV, and the temperature of the star is well below that. Therefore, the exponen-
tial suppression exp(−Δ/T ) forbids any sizable effect of the Urca process. Other
processes coming from Goldstone modes dominate the neutrino emissivity in the
CFL phase [4]. However, their contribution is much lower than that of the unsup-
pressed direct Urca process. Therefore, if the core of a hybrid star is made of CFL
quark matter, with outer layers of nuclear matter where any kind of Urca process is
possible, the cooling properties are utterly dominated by these outer layers.

We have briefly discussed that at lower densities the CFL phase may not be the
ground state anymore. Any other color-superconducting phase will have ungapped
modes.2 The simplest example is the so-called 2SC phase where all blue and strange
quarks are ungapped while the others are gapped. There are more complicated can-
didate phases with ungapped modes only in certain directions in momentum space.
In any case, the neutrino emissivity of these phases will be dominated by these
ungapped modes, and thus will be comparable to the emissivity of unpaired quark
matter. We are thus interested in the neutrino emissivity of unpaired quark matter.
To be a bit more ambitious, let us discuss the emissivity in the 2SC phase. From
this calculation we will obtain the result for the unpaired phase “for free” because
of the unpaired modes in the 2SC phase. Furthermore, we learn something about
computing reaction rates in a superconductor which show some interesting features.
And also we will see in an actual calculation why the emissivity of the gapped
modes is exponentially suppressed. In other words, the goal of this section will be
to understand

• the role of the Cooper pair condensate and the energy gap on the Urca process
(we shall estimate this qualitatively)

• the result of the emissivity of unpaired (ultrarelativistic) quark matter (we shall
compute this quantitatively).

2 A possible exception is the color-spin locked phase which has Cooper pairs with total angular
momentum one and which we do not discuss here.
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All we shall need from the 2SC phase is the propagator. From Eq. (4.92) we know
that the general form of the propagator can be written as

G± = γ 0Λ∓
k

∑
r

Pr
k0 ∓ (μ − k)

k2
0 − ε2

k,r

, (5.8)

where we used Eq. (4.83) and where we dropped the antiparticle contribution. Note
that this form of the propagator assumes that all flavor chemical potentials are the
same. For the neutrino emissivity we need to drop this assumption. The order param-
eter in the 2SC phase is characterized by φB

A = δA3δ
B3 where φ is the color-flavor

matrix from Eq. (4.26). For simplicity, we drop the strange quarks and consider only
a two-flavor system of up and down quarks.3 Then, the color-flavor structure of the
gap matrix is

M = τ2 J3 , (5.9)

with the second Pauli matrix τ2 in flavor space and J3 in color space, as defined
above Eq. (4.29). The color-flavor structure of the 2SC phase is much easier to deal
with than the one of the CFL phase because color and flavor matrices factorize.
Since τ 2

2 = 1, we have M2 = J 2
3 , whose eigenvalues are λ1 = 1 (fourfold) and

λ2 = 0 (twofold). This is the formal way of saying that in the 2SC phase quarks
of one color, say blue, remain ungapped. The projectors onto the corresponding
eigenspaces in color-flavor space are

P1 = J 2
3 , P2 = 1 − J 2

3 . (5.10)

They are trivial in flavor space and project onto red and green quarks (which are
gapped) and blue quarks (which are ungapped), respectively.

In a neutral two-flavor system, up and down chemical potentials are different,
namely μu + μe = μd , where μe turns out to be nonzero due to the neutrality
constraint. The generalization of the propagator (5.8) to this case can be written in
terms of the flavor components (see Problem 5.1)

G±
u = γ 0Λ∓

k

∑
r

k0 ∓ (μu − k)

(k0 ∓ δμ)2 − ε2
k,r

Pr , (5.11a)

G±
d = γ 0Λ∓

k

∑
r

k0 ∓ (μd − k)

(k0 ± δμ)2 − ε2
k,r

Pr , (5.11b)

3 The weak interaction between u and s quarks is suppressed compared to the one between u and d
quarks due to the Cabibbo angle. However, the finite strange quark mass may partially compensate
this effect because it leads to a larger phase space for the Urca process. Here in these lectures we
do not want to deal with these complications and thus simply consider a system of massless up and
down quarks, and thus only the processes (5.7a).



100 5 Neutrino Emissivity and Cooling of the Star

with

εk,r ≡
√
(μ̄ − k)2 + λrΔ2 , δμ ≡ μd − μu

2
, μ̄ ≡ μd + μu

2
, (5.12)

and λr , Pr as above (Pr now being only matrices in color space since the flavor com-
ponents are written separately). This structure of the propagator and the resulting
quasiparticle dispersion relations are interesting on their own, since they describe
Cooper pairing with a mismatch in Fermi momenta, as discussed at the end of
Sect. 4.3. However, in the present context of neutrino emissivity, we are only inter-
ested in the qualitative features of the gapped modes. Thus we shall ignore this
complicated structure of the propagator and temporarily set μu = μd . Only when
we compute the emissivity from the unpaired modes we shall reinstate the difference
in up and down chemical potentials.

Next we need to set up the equation that determines the neutrino emissivity.
One possible formalism is the finite temperature real-time formalism. We shall not
explain this formalism but refer the reader for more details to the textbooks [5] and
[6]. For our purpose it is enough to know that the real-time formalism can be used for
nonequilibrium calculations. Therefore it is well suited for transport properties and
neutrino emissivity. Since these properties are always close-to-equilibrium proper-
ties, one often simply uses an equilibrium formalism, such as the imaginary-time
formalism, and adds whatever is needed as a small out-of-equilibrium feature by
hand. In the real-time formalism we can start from the kinetic equation

i
∂

∂t
Tr
[
γ0G<

ν (Pν)
]

= −Tr
[
G>

ν (Pν)Σ
<
ν (Pν) − Σ>

ν (Pν)G
<
ν (Pν)

]
, (5.13)

where G>
ν and G<

ν are the so-called “greater” and “lesser” neutrino propagators, and
Pν is the neutrino four-momentum. The greater and lesser propagators are obtained
from the retarded propagator in the same way as given in Eqs. (5.14) for the case of
the W -boson polarization tensor. The trace in Eq. (5.13) is taken over Dirac space.
The two terms on the right-hand side correspond to the two directions of both pro-
cesses (5.7a), i.e., there is a neutrino gain term from d → u+e+ ν̄e, u+e → d +νe,
and a neutrino loss term from u + e + ν̄e → d, d + νe → u + e. Since neutrinos,
once created, simply leave the system, only the gain terms, namely the directions
given in Eq. (5.7a), contribute. The neutrino self-energies Σ<,>

ν are given by the
diagram in Fig. 5.2. The present formalism amounts to cutting this diagram. The
figure shows that a cut through the internal u, d, and e lines produces two diagrams
which represent the Urca process. One part of the neutrino self-energies are the
W -boson polarization tensors Π<,>, as shown diagrammatically in Fig. 5.2. They
are defined through the imaginary part of the retarded polarization tensor ImΠR ,

Π>(Q) = −2i[1 + fB(q0)]ImΠR(Q) , (5.14a)

Π<(Q) = −2i fB(q0)ImΠR(Q) , (5.14b)
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Fig. 5.2 Neutrino self-energy Σν and W -boson polarization tensor Π needed for the neutrino
emissivity from the quark Urca process

with the Bose distribution function fB(x) = 1/(ex/T − 1). We shall discuss the
calculation of ImΠR in detail below. The kinetic equation (5.13) becomes

∂

∂t
fν(t,pν) = G2

F

8

∫
d3pe

(2π)3 pν pe
Lλσ (pe,pν)

× fF (pe − μe) fB(pν + μe − pe)ImΠλσ
R (Q) , (5.15)

where fF (x) = 1/(ex/T + 1) is the Fermi distribution function, where, due to
four-momentum conservation,

Q = (pe − pν − μe,pe − pν) , (5.16)

and where

Lλσ (pe,pν) ≡ Tr
[
(γ0 pe − γ · pe) γ

σ (1 − γ 5)(γ0 pν − γ · pν) γ λ(1 − γ 5)
]
.

(5.17)

(In this section, Lorentz indices are denoted λ, σ, . . . in order to avoid confusion
with the subscript ν which indicates neutrino quantities.) If you are interested in the
details of the derivation of Eq. (5.15) or more details about the real-time formal-
ism, see Ref. [7] and references therein. In this reference the neutrino emissivity is
computed in the same formalism; however, for anisotropic phases, which leads to
more complicated calculations than we shall present here. The following is equally
understandable if you simply start with Eq. (5.15) whose features are physically
plausible as we explain now.

The left-hand side of Eq. (5.15) is the change of the neutrino occupation number
in time. It is related to the emissivity by

εν ≡ −2
∂

∂t

∫
d3pν
(2π)3

pν fν(t,pν) , (5.18)

where the factor 2 accounts for the contribution from antineutrinos. The neutrino
emissivity is thus the change in energy per unit time and volume. Our task is to
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compute the right-hand side of Eq. (5.15) and integrate over the neutrino momentum
according to Eq. (5.18) to obtain εν . To understand the right-hand side of Eq. (5.15)
first note that the vertex Γ μ for the processes d ↔ u + W − and e ↔ ν + W − is
given by

Γ μ = − e

2
√

2 sin θW
γ μ(1 − γ 5) , (5.19)

with the Weinberg angle θW . (For the process d ↔ u + W − there is an addi-
tional factor Vud from the Cabibbo–Kobayashi–Maskawa (CKM) matrix; however,
Vud � 1.) The W -boson propagators can be approximated by the inverse W -boson
mass squared M2

W since all momenta we are interested in are much smaller than
this mass MW � 80 GeV. Thus, pulling out the constant factors of the vertices in
the W -boson polarization tensor, we obtain the overall factor G2

F with the Fermi
coupling constant

G F =
√

2e2

8M2
W sin2 θW

= 1.16637 · 10−11 MeV−2 . (5.20)

The additional factors in the trace of Eq. (5.17) come from the electron and neu-
trino propagators. And finally, the distribution functions in Eq. (5.15) belong to the
electron and the W -boson. Eventually, the Bose distribution of the W will drop out
since the W -boson polarization tensor will turn out to be ∝ f −1

B , see below. This
makes sense because the W does not appear in the initial or final state of the process
we are interested in.

5.2.1 W-Boson Polarization Tensor

Next we need to compute ImΠλσ
R for which we first compute

Πλσ (Q) = T

V

∑
K

Tr
[
Γ λ−S(K )Γ σ+ S(P)

]
, (5.21)

where the trace is taken over Dirac, color, flavor, and Nambu–Gorkov space. We
have defined P ≡ K + Q; K and P will play the role of the u and d quark momen-
tum, respectively. The weak vertices in Nambu–Gorkov space are

Γ λ± =
(
γ λ(1 − γ 5) τ± 0

0 −γ λ(1 + γ 5) τ∓

)
, (5.22)

where τ± ≡ (τ1 ± iτ2)/2 are matrices in flavor space, constructed from the Pauli
matrices τ1, τ2. They take care of the fact that a u and a d quark interact at
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the vertices. Recall that, for notational convenience, we have pulled out the con-
stants of the weak vertices already and absorbed them in the overall factor G2

F .
With the quark propagator S from Eq. (4.87), the trace over Nambu–Gorkov space
yields

Πλσ (Q) = T

V

∑
K

{
Tr
[
γ λ(1 − γ 5)τ−G+(K )γ σ (1 − γ 5)τ+G+(P)

]

+Tr
[
γ λ(1 + γ 5)τ+G−(K )γ σ (1 + γ 5)τ−G−(P)

]

− Tr
[
γ λ(1 − γ 5)τ−F−(K )γ σ (1 + γ 5)τ−F+(P)

]

−Tr
[
γ λ(1 + γ 5)τ+F+(K )γ σ (1 − γ 5)τ+F−(P)

] }
. (5.23)

We see that there is a contribution from the anomalous propagators F±. The corre-
sponding diagram in Fig. 5.3 is an instructive example for processes in a supercon-
ductor which are only possible due to the Cooper pair condensate, see explanation
in the caption of the figure. The anomalous contribution is thus only present for the
gapped modes. We shall ignore it here for simplicity (it is smaller than the contribu-
tion from the normal propagators, but not negligibly small [8]). This leaves us with
the first two traces in Eq. (5.23) which are the contribution of the normal propagators
(they of course also contain the superconducting gap). It turns out that both traces
are identical which we use without explicit proof. We thus continue simply with
twice the first term,

Πλσ (Q) � 2
T

V

∑
K

∑
r,s

Tr
[
γ λ(1 − γ 5)τ−γ0PrΛ

−
k γ

σ (1 − γ 5)τ+γ0PsΛ
−
p

]

×k0 − (μ − k)

k2
0 − ε2

k,r

p0 − (μ − p)

p2
0 − ε2

p,s

, (5.24)

W 
_

W 
_

u

du

d
<ud>

<ud>

Πanomalous
=

Fig. 5.3 Anomalous contribution to the W -boson polarization tensor Π . The loop consists of two
anomalous fermion propagators, according to Eq. (4.88b). The lower propagator consists of a full
fermion propagator (double line), the condensate (hatched circle), and a charge-conjugate free
propagator (single line in opposite direction), and analogously for the upper one. Electric charge
conservation at the weak vertices determines the flavor content of each line. As a consequence, one
reads off that the condensate acts as a reservoir that can convert a u quark into a d quark hole and
vice versa
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where we have inserted the propagator (5.8). [Recall that we have set μu = μd

temporarily to avoid complications; this is sufficient to discuss the effects of super-
conductivity qualitatively, but eventually we shall reinstate the difference in μu and
μd to compute the result for unpaired quark matter. In principle, for the 2SC phase
we would have to use the propagators given in Eq. (5.11)]. The color-flavor traces
are

Tr[τ−P1τ+P1] = 2 , (5.25a)

Tr[τ−P1τ+P2] = 0 , (5.25b)

Tr[τ−P2τ+P1] = 0 , (5.25c)

Tr[τ−P2τ+P2] = 1 . (5.25d)

Recalling that P1 projects onto the gapped red and green quarks and P2 onto the
ungapped blue quarks, this is easy to interpret: the weak interaction cannot change
colors. Therefore, the quark loop in the polarization tensor – see right diagram in
Fig. 5.2 – contains an up quark and a down quark of the same color. They are either
both gapped (then they are red or green, hence the result 2 in Eq. (5.25a)), or they
are both ungapped (then they are blue). There is no term involving one gapped and
one ungapped quark. We thus get two contributions,

Πλσ (Q) � 2
T

V

∑
K

T λσ (k̂, p̂)

×
[

2
k0 − (μ − k)

k2
0 − ε2

k,1

p0 − (μ − p)

p2
0 − ε2

p,1

+ k0 − (μ − k)

k2
0 − ε2

k,2

p0 − (μ − p)

p2
0 − ε2

p,2

]
,

(5.26)

where we abbreviated the Dirac trace

T λσ (k̂, p̂) ≡ Tr
[
γ λ(1 − γ 5)γ0Λ

−
k γ

σ (1 − γ 5)γ0Λ
−
p

]
. (5.27)

We notice that the second contribution in Eq. (5.26) is obtained from the first upon
setting Δ = 0. Thus, for notational convenience, let us simply continue with one
color degree of freedom, say the first term without the factor 2, and denote εk ≡ εk,1.
In the end it is then straightforward to get the full result.

Next one has to perform the sum over the fermionic Matsubara frequencies. This
technique is discussed in detail for a simple example in Appendix A.2.1. Here we
need the more complicated result from Problem A.2,

T
∑
k0

k0 − (μ − k)

k2
0 − ε2

k

p0 − (μ − p)

p2
0 − ε2

p

= − 1

4εkεp

∑
e1,e2

[εk + e1(μ − k)][εp + e2(μ − p)]
q0 − e1εk + e2εp

fF (−e1εk) fF (e2εp)

fB(−e1εk + e2εp)
.

(5.28)
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(Remember P = Q + K .) We comment on the physical meaning of the sum
over the signs e1, e2 = ± below. To obtain the retarded polarization tensor, we
need to replace q0 → q0 − iη. Then, the imaginary part is obtained by using the
identity

lim
η→0+

1

x ± iη
= P 1

x
∓ iπδ(x) , (5.29)

where P denotes the principal value. This yields

ImΠλσ
R (Q) � −2π

∑
e1e2

∫
d3k
(2π)3

T λσ (k̂, p̂)Be1
k Be2

p

× fF (−e1εk) fF (e2εp)

fB(−e1εk + e2εp)
δ(q0 − e1εk + e2εp) , (5.30)

where we have defined the Bogoliubov coefficients

Be
k ≡ 1

2

(
1 + e

μ − k

εk

)
. (5.31)

These coefficients appear in the theory of any kind of superconductor or superfluid,
see for instance Ref. [9]. Inserting the result (5.30) back into Eq. (5.15) yields

∂

∂t
fν(t,pν) = −πG2

F

4

∑
e1e2

∫
d3ped3k

(2π)3(2π)3 pν pe
Lλσ (pe,pν)T λσ (k̂, p̂)Be1

k Be2
p

× fF (pe − μe) fF (−e1εk) fF (e2εp)δ(q0 − e1εk + e2εp) . (5.32)

As expected, the Bose distribution from Eq. (5.15) cancels with the denominator
from Eq. (5.30) since on the one hand q0 = pe − pν − μe according to Eq. (5.16)
and on the other hand q0 = e1εk − e2εp according to the δ-function.

5.2.2 Effect of Superconductivity on Urca Process

Equation (5.32) describes the change in the neutrino occupation number due to the
process u +e → d +νe. [The other relevant process d → u +e+ ν̄e yields the same
result and is taken into account by the factor 2 in Eq. (5.18).] For this process one
expects Fermi distributions of the form fe fu(1− fd), the factors fe and fu standing
for the incoming fermions, and the factor 1 − fd standing for the outgoing fermion
(for the neutrino, fν � 0). So what is the meaning of the sum over e1, e2? With
f (−x) = 1 − f (x) it seems that all combinations fe fu fd , fe fu(1 − fd), fe(1 −
fu) fd , and fe(1− fu)(1− fd) appear. In other words, also processes where both the
up and down quark are created or annihilated apparently give a contribution. More
precisely, the quasiparticles, which are mixtures of up and down particles and holes,
are allowed to appear on either side of the reaction. This is an interesting property of
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a superconductor or superfluid where particle number conservation is spontaneously
broken and particles can be created from or deposited into the condensate.

To see explicitly that in the unpaired phase only one of the four subprocesses sur-
vives, let us define the new Bogoliubov coefficients and the new dispersion relations

B̃e
k ≡ 1

2

(
1 + e

k − μ

ε̃k

)
, ε̃k ≡ sgn(k − μ)εk . (5.33)

Then we use that for any function F we have

∑
e

∫ ∞

0
dk Be

k F(eεk) =
∑

e

∫ ∞

0
dk B̃e

k F(−eε̃k) . (5.34)

This reformulation is useful to understand the mixing of particles and holes, which
is manifest in the Bogoliubov coefficients. Had we taken the limit Δ → 0 with
the original formulation in Be

k , εk , we would have obtained the excitation energy
εk = |k − μ| which describes a hole for k < μ and a particle for k > μ. The
more conventional excitation εk = k − μ which describes a particle for all k is
only obtained as a limit using B̃e

k , ε̃k (both formulations are of course physically
equivalent). Now, since in the unpaired phase B̃+

k = 1, B̃−
k = 0, we see that only

the subprocess with e1 = e2 = 1 survives in the unpaired phase. The other three
subprocesses are only possible in the superconducting phase.

The general result in the superconducting phase has to be computed numerically.
Here we proceed with a discussion of the behavior at temperatures much smaller
than the gap, T � Δ. The neutrino emissivity is obtained by integrating Eq. (5.32)
over the neutrino momentum according to Eq. (5.18). For the purpose of a simple
estimate we may consider the expression

εν ∼
∑

e1,e2=±

∫

v,x,y

(
ev+e1

√
y2+ϕ2−e2

√
x2+ϕ2 + 1

)−1

×
(

e−e1

√
y2+ϕ2 + 1

)−1 (
ee2

√
x2+ϕ2 + 1

)−1
, (5.35)

where we have abbreviated

ϕ ≡ Δ

T
,

∫

v,x,y
≡
∫ ∞

0
dv v3

∫ ∞

0
dx
∫ ∞

0
dy , (5.36)

and introduced the new dimensionless variables

x = p − μd

T
, y = k − μu

T
, v = pν

T
. (5.37)

The integration over the electron momentum has been rewritten as an integration
over the d-quark momentum. We shall discuss the calculation more explicitly for
the case of unpaired quark matter below. Especially the angular integral, i.e., the
phase space for the process, needs to be considered in detail. For now we are only
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interested in the suppression due to the gap. In the integrand of Eq. (5.35) one
recovers the distribution functions for the electron, the u-quark, and the d-quark.

We may now perform the sum over e1 and e2 and approximate e
√

x2+ϕ2  1 and

e
√

y2+ϕ2  1, since ϕ → ∞ for small temperatures. Then the four terms, in the
order (e1, e2) = (+,+), (−,−), (−,+), (+,−), become

εν ∼
∫

v,x,y

(
1

e
√

x2+ϕ2 + ev+
√

y2+ϕ2
+ 1

ev+
√

x2+ϕ2 + e
√

y2+ϕ2

+ 1

ev + e
√

x2+ϕ2+
√

y2+ϕ2
+ 1

ev+
√

x2+ϕ2+
√

y2+ϕ2

)
. (5.38)

The terms where e1, e2 assume different signs, i.e., the third and fourth term, yield
contributions of the order of e−2ϕ . They are thus even stronger suppressed than the
first two terms which are identical and yield contributions proportional to e−ϕ ,

∫

v,x,y

1

e
√

x2+ϕ2 + ev+
√

y2+ϕ2
�
∫

v,x,y

e−ϕ

ex2/(2ϕ) + ev+y2/(2ϕ)

= 2ϕe−ϕ

∫

v,x,y

1

ex2 + ev+y2 � 21.27ϕe−ϕ. (5.39)

In the last step we have performed the remaining integral numerically which yields
a numerical factor, unimportant for our present purpose. The main result is the
expected exponential suppression of the neutrino emissivity for case of gapped u
and d quarks, εν ∝ e−Δ/T for T � Δ. The full numerical solution, also taking into
account the temperature dependence of the gap Δ, shows that this approximation is
valid up to temperatures of about T � Tc/3 where Tc is the critical temperature of
superconductivity.

5.2.3 Result for Unpaired Quark Matter

With the help of the new Bogoliubov coefficients (5.33) we can easily take the limit
of unpaired quarks. For an explicit calculation of the emissivity for this case we need
the following ingredients. First we need to perform the remaining traces in Dirac
space and do the contraction over Lorentz indices. This is done in Problem 5.2 with
the result

Lλσ (pe,pν)T λσ (k̂, p̂) = 64(pe − pe · k̂)(pν − pν · p̂) . (5.40)

Next we observe that the result for the right-hand side of Eq. (5.32) would be zero
without further corrections: we have to take into account so-called Fermi liquid
corrections which are induced by the strong interaction. We have mentioned these
corrections briefly in Sect. 2.3, see Eq. (2.78). To lowest order in the strong coupling
constant αs – which is related to the coupling g from Sect. 4.3 by αs = g2/(4π) –
we have
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μ κd

(1−  )

(1−  )

μ κu μu

μd

pe

pu

pd
pe

pd

pu

Fig. 5.4 Illustration of how Fermi liquid effects from the strong interaction open up the phase
space for the direct Urca process in unpaired quark matter. Right-hand side (solid Fermi momenta):
without Fermi liquid corrections, the Fermi momenta of the ultrarelativistic quarks are given by
pF,u = μu , pF,d = μd . Start with the momentum of the up-quark, pu . The circle with center at its
tip indicates possible endpoints of the electron momentum pe. Since pF,e = μe and μu +μe = μd
(β-equilibrium), one cannot form a triangle with pu , pe and the down-quark momentum pd , unless
one chooses the three vectors to be collinear. In this case, the triangle collapses to a line and the
phase space for the Urca process vanishes. Note that the neutrino momentum pν ∼ T is negligibly
small on the scale of the figure. Left-hand side (dashed Fermi momenta): the strong interaction
changes the quark Fermi momenta to pF,u � μu(1 − κ), pF,d � μd (1 − κ) with κ = 2αs/(3π).
In other words, both Fermi momenta are reduced, but the down-quark Fermi momentum is reduced
by a larger absolute amount. Since the electron Fermi momentum is not changed, a finite region
in phase space opens up. The resulting triangle has a fixed angle between up- and down-quark
momenta given by the values of the chemical potentials and κ

pF,u/d = μu/d(1 − κ) , κ ≡ 2αs

3π
. (5.41)

We illustrate in Fig. 5.4 how these corrections open up the phase space for the direct
Urca process. As a consequence, there is a fixed angle θud between the u and d
quarks, and the δ-function in Eq. (5.32) can be approximated by

δ(pe − pν + k − p) � μe

μuμd
δ(cos θud − cos θ0) , cos θ0 ≡ 1 − κ

μ2
e

μuμd
.

(5.42)
(We have reinstated the different chemical potentials μu , μd .) We denote the angle
between the neutrino and the d quark by θνd and approximate the factor

(pe − pe · k̂)(pν − pν · p̂) � 2μe pνκ(1 − cos θνd) . (5.43)
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This factor vanishes for the case of collinear scattering. The αs effect renders it
nonzero, hence this factor and in consequence the total neutrino emissivity is pro-
portional to αs . Putting all this together and changing the integration variable from
pe to the d quark momentum p yields

∂

∂t
fν(t,pν) = −64G2

Fαsμeμdμu

∫
dp dΩp

(2π)3

∫
dk dΩk

(2π)3
(1 − cos θνd)

× δ(cos θud − cos θ0) fF (pe − μe) fF (k − μu)[1 − fF (p − μd)].
(5.44)

Since we have taken only one color degree of freedom from Eq. (5.26), we have
reinstated a factor Nc = 3. Next we introduce the dimensionless variables x , y, v
from Eq. (5.37), and with the definition (5.18) of the total neutrino emissivity we
obtain

εν = 128αs G2
Fμeμuμd T 6

∫
dΩpν

(2π)3

∫
dΩp

(2π)3

∫
dΩk

(2π)3

×(1 − cos θνd)δ(cos θud − cos θ0)

×
∫ ∞

0
dv v3

∫ ∞

−∞
dx
∫ ∞

−∞
dy fF (v + x − y) fF (y)[1 − fF (x)] . (5.45)

Here we have approximated the lower boundaries by −μu/d/T � ∞. With the
integral

∫ ∞

0
dv v3

∫ ∞

−∞
dx
∫ ∞

−∞
dy fF (v + x − y) fF (y)[1 − fF (x)] = 457

5040
π6 ,

(5.46)
and the (trivial) angular integral

∫
dΩpν

(2π)3

∫
dΩp

(2π)3

∫
dΩk

(2π)3
(1 − cos θνd)δ(cos θud − cos θ0) = 1

16π6
, (5.47)

we obtain the final result

εν � 457

630
αs G2

Fμeμuμd T 6 . (5.48)

This result has first been computed by Iwamoto in 1980 [10].

5.3 Cooling with Quark Direct Urca Process

From the result for the neutrino emissivity we can now get a simple cooling curve
for unpaired quark matter. Of course we shall ignore a lot of details of realistic
stars. The result will simply show how a chunk of unpaired two-flavor quark matter
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cools via the direct Urca process. Nevertheless, the result is very illustrative and
shows that the direct Urca process is indeed an efficient cooling mechanism. We use
Eq. (4.22), which relates the temperature as a function of time to the emissivity and
the specific heat. For the emissivity we use the result (5.48). For the specific heat,
recall the result (4.13) which is valid for two fermionic degrees of freedom, taking
into account spin; we thus have to multiply this result by the number of colors and
add up the contributions of u and d quarks,

cV = (μ2
u + μ2

d)T . (5.49)

Then, performing the integration in Eq. (4.22) yields

T (t) = T0τ
1/4

(t − t0 + τ)1/4
, (5.50)

where we have defined

τ = 315

914

μ2
u + μ2

d

αs G2
Fμeμuμd

1

T 4
0

. (5.51)

To get an estimate for this characteristic time scale, we assume μd = 500 MeV,
μu = 400 MeV, μe = 100 MeV, αs = 1, an initial temperature of T0 = 100 keV
at an initial time t0 = 100 years, and use the value of the Fermi coupling (5.20) to
obtain

τ � 10−5 yr � 5 min . (5.52)

This is a very short time compared to the astrophysical time scales we are interested
in. The function T (t) is plotted in Fig. 5.5. We see the rapid drop in temperature on
a time scale of minutes down to a few keV. We thus recover the shape of the direct
Urca cooling from Fig. 5.1. For late times t  t0, we have T (t) ∝ t−1/4.

Fig. 5.5 Cooling curve from
the direct Urca process in
two-flavor, unpaired,
ultrarelativistic quark matter,
see Eq. (5.50)
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Problems

5.1 2SC propagator
Show that for the case of different flavor chemical potentials the fermion propagator
of the 2SC phase is given by Eqs. (5.11) and (5.12).

5.2 Trace over Dirac space
Show that

Lλσ (pe,pν)T λσ (k̂, p̂) = 64(pe − pe · k̂)(pν − pν · p̂) , (5.53)

with Lλσ (pe,pν) and T λσ (k̂, p̂) defined in Eqs. (5.17) and (5.27), respectively.
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Chapter 6
Discussion

Let us summarize what we have learned about compact stars and dense matter,
having in mind the two questions we have formulated in the preface. In addition,
let us also list a few things which would in principle have fitted into these lectures
topic-wise. We haven’t discussed them in the main part because either I found them
not suitable for a concise, and yet pedagogical, introduction or because they are sim-
ply beyond the scope of these lectures, such as some of the theoretical approaches
to dense matter listed at the end of Sect. 6.2. And, well, some selection has to be
made, so for some of the following points there is no good reason why they appear
here and not in the main part. The volume of the main part is chosen such that it
should conveniently fit into a one-semester course, maybe dropping one or two of
the more specialized subsections. In Sect. 6.2 I will give some selected references
where interested readers can find more information about the questions we haven’t
addressed in the main part.

6.1 What We Have Discussed

• Astrophysical observables and their relation to microscopic physics. The first
thing you should have learned in these lectures is in which sense compact stars
are laboratories for the understanding of dense matter. The experiments we can
do in this laboratory are less controlled as for example tabletop experiments in
condensed matter physics. This means we cannot always measure the quantities
we would like to know, or at least not to an accuracy we would need for our
purposes. And it means that it is often impossible to switch on or off certain
unwanted effects at will, which would be desirable to extract an exact value
for a given quantity. For instance we would ideally like to have a precise look
into the interior of a compact star, but these kind of observations will always be
indirect at best since the information we get from the interior is filtered through
the surface and the atmosphere of the star. However, in spite of these restrictions
(which, to some extent, have been and will be overcome through improvements in
observational technology), we have seen that our observational data of compact
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stars can be closely linked to the properties of dense matter. Examples we have
discussed in detail are the mass-radius relation which is related to the equation
of state and the cooling curve which is related to the neutrino emissivity and the
specific heat.

• Theoretical approaches to dense matter. We have emphasized at several points
in these lectures that the density regime which is of interest for the physics of
compact stars is very difficult to tackle. After all, this difficulty led us to con-
sider compact stars not only as an application of QCD but also as an impor-
tant means to understand QCD. The main reason for the theoretical difficulty
is the strong-coupling nature of QCD. We have discussed attempts to approach
the relevant density regime from two sides, coming from lower and higher
density.

First, we have discussed nuclear matter, for which we have solid knowledge
at low densities. This knowledge is strongly built upon experimental data. In
principle, even a single nucleon is theoretically a very complicated object if con-
sidered from first principles. First-principle calculations, at least for sufficiently
simple properties of nucleons, are possible in computer simulations, but effec-
tive theories remain an important tool to describe nuclear matter, and they work
well (by construction) at sufficiently low densities. One of the basic examples we
have discussed is the Walecka model. However, finding the correct description of
nuclear matter at high density is a challenge, and astrophysical data can be used
to rule out or confirm certain models.

Second, we have discussed QCD from first principles in the context of decon-
fined quark matter. This approach is rigorous at asymptotically high density
and therefore is interesting on its own right. We have discussed that it predicts
the CFL state. Whether CFL persists down to densities relevant for compact
stars is unknown. We have discussed that, to get a rough idea about the low-
density region, one may simply extrapolate the rigorous results. But this of course
stretches the results beyond their range of validity. We have also introduced a
more powerful approach to deduce intermediate-density properties from the high-
density calculations. This approach relies on the symmetries of the CFL state.
Building on these symmetries, one can construct an effective theory which can
give us at least qualitative insight into the properties of CFL at lower densities,
although this approach cannot tell us whether CFL is indeed the ground state of
matter at densities present in the core of a compact star.

6.2 What We Could Have, But Haven’t, Discussed

• r-modes – bulk/shear viscosity. We have said little about the rotation of a compact
star except for stating that it can rotate very fast, up to almost a thousand times
per second. For the purpose of our lecture, however, the rotation frequency is
a very interesting observable because it is sensitive to the microscopic physics.
One of the reasons is as follows.
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Certain non-radial oscillatory modes of a rotating star, in particular the so-called
r -modes,1 are generically unstable with respect to gravitational radiation. The
reason can be understood in a rather simple argument. Consider the situation
where the star rotates counterclockwise, seen from the polar view, and where an
observer in the co-rotating frame sees non-radial oscillations which propagate
clockwise. These modes lower the total angular momentum of the star, i.e., if
the star’s angular momentum is positive, the oscillations have negative angular
momentum. Now assume that these propagating modes are seen from a distant
observer to move counterclockwise, i.e., they are “dragged” by the star’s rotation
or, in other words, their angular velocity in the co-rotating frame is smaller in
magnitude than the angular velocity of the star, seen from a distant observer.
The pulsations now couple to gravitational radiation. The emitted radiation has
positive angular momentum since a distant observer sees the pulsations move
counterclockwise. Consequently, the total angular momentum of the star must be
lowered. This, however, means that the angular momentum of the oscillations,
which is already negative, is increased in magnitude (becomes more negative).
Therefore, the emission of gravitational radiation tends to increase the amplitude
of the pulsation which in turn leads to a stronger gravitational radiation etc. This
is the r -mode instability. Note that the rotation of the star is crucial for this argu-
ment. In a non-rotating star, the effect of gravitational radiation is dissipative, i.e.,
the non-radial oscillations would be damped. For a nice pedagogical introduction
into this general relativistic effect see Ref. [1].

The energy loss from gravitational radiation due to the r -mode instability
makes the star spin down drastically and quickly. Consequently, the observation
of sufficiently high rotation frequencies implies that some mechanism must be
at work to avoid the instability. The above argument for the instability is generic
for all rotating perfect fluid stars. If there is dissipation, i.e., if the matter inside
the star has a nonzero viscosity, the instability can be damped. Put differently, in
order to rotate fast the star has to be viscous. This statement seems paradoxical
at first sight but makes sense with the above explanation. In Fig. 6.1 we show an
example for critical frequencies of hybrid and quark stars, derived from viscosity
calculations.

In hydrodynamics, there are two kinds of viscosity, shear and bulk viscosity.2

Bulk viscosity describes dissipation for the case of volume expansion or com-
pression while shear viscosity is relevant for shear forces. Both kinds of viscosi-
ties are relevant for the damping of the r -mode instability, typically they act in
different temperature regimes, bulk viscosity at rather large, shear viscosity at
rather small temperatures. What is the microscopic physics behind the viscosity?
Let us explain this for the case of the bulk viscosity.

1 Oscillatory modes of compact stars are classified according to their restoring force. In the case
of r -modes, this is the Coriolis force.
2 In the case of a superfluid, there are in fact several bulk viscosities.
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Fig. 6.1 Critical rotation frequency (normalized to the Kepler frequency ΩK , the upper limit for
the rotation frequency beyond which the star would start shedding mass from its equator) as a
function of temperature for hybrid and quark stars. If a star is put somewhere above the respective
curves, the r -mode instability will set in and the star will spin down quickly. “APR” stands for
a certain nuclear equation of state, “Bag” denotes unpaired quark matter in the bag model and
the box labelled LMXB indicates the location of observed low-mass X-ray binaries. Within the
given calculation they are located in a stable region for both hybrid and quark stars. For more
explanations and details see Ref. [2] where this figure is taken from

Imagine a chunk of nuclear or quark matter in thermal and chemical equilib-
rium in a volume V0. Now we compress and expand this volume periodically,
V (t) = V0 + δV0 cosωt . In the astrophysical setting, these will be local vol-
ume oscillations where ω is typically of the order of the rotation frequency of
the star. Through the volume change the matter gets out of thermal and, pos-
sibly, chemical equilibrium. The latter may happen if the matter is composed
of different components whose chemical potentials react differently on a den-
sity change. An example is unpaired quark matter with massless up and down
quarks and massive strange quarks. The system now seeks to reequilibrate. For
instance, if the compression has increased the down quark chemical potential
compared to the strange quark chemical potential (in chemical equilibrium they
are equal), the system reacts by producing strange quarks, for instance via the
process u + d → u + s. If it does so on the same time scale as the exter-
nal oscillation, there can be sizable dissipation (think of compressing a spring
which changes its spring constant during the process; you will not get back
the work you have put in). Consequently, the calculation of the bulk viscosity
requires the calculation of the rate of processes such as u + d → u + s which
indeed turns out to be the dominant process for the bulk viscosity in unpaired
quark matter. Other processes which contribute are leptonic processes, such as
the direct Urca process we have discussed in the context of neutrino emissivity
in Sect. 5.2. It is important to note that again the weak processes are the rel-
evant ones. In principle, also strong processes contribute to the bulk viscosity
since they reequilibrate the system thermally. However, they do so on time scales
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much smaller than the external oscillation. Therefore, the system reequilibrates
basically instantaneously during the compression process and no energy is dis-
sipated. These arguments also show that the bulk viscosity is a function of the
(external) frequency. Maximum bulk viscosity is obtained when the rate of the
respective microscopic process (which is a function of temperature) is closest
to this frequency. Hence, it may well be that for a certain temperature regime a
superconducting state has larger bulk viscosity than a non-superconducting state.
This may sound counterintuitive but note that the (partial) suppression of the
rate of the microscopic process by exp(−Δ/T ) may actually help the viscosity
if it brings the rate closer to the external frequency. See for instance Sect. VII
in Ref. [3] for a brief review about viscosity in quark matter phases, and Refs.
[4, 5] for examples of detailed microscopic calculations of bulk viscosity in quark
matter.

• Magnetic fields. We have mentioned in the introduction that compact stars can
have huge magnetic fields, the highest magnetic fields measured for the surface
of a star (then called magnetar) are about 1015 G. The first question one might
ask is what the origin of these magnetic fields is. The conventional explanation is
that they are inherited from the star’s progenitor, a giant star that has exploded in
a supernova. While the magnetic flux is conserved in this process, the magnetic
field is greatly enhanced because the magnetic field lines are confined in a much
smaller region after the explosion.

Other questions regarding the magnetic field concern their interplay with dense
matter. We have learned that nuclear matter can contain superconducting protons.
Protons form a type-II superconductor where the magnetic field is confined into
flux tubes. Since at the same time the rotating neutron superfluid forms vortices,
a complicated picture emerges, where arrays of flux tubes and vortices inter-
twine each other. Their dynamics is complicated and relevant for instance for the
observed precession times of the star, see for instance Ref. [6]. This issue is also
related to pulsar glitches, see below.

In the main part we have only touched the interplay of color superconductors
with magnetic fields. We have stated without calculation that the CFL phase is
not an electromagnetic superconductor, i.e., a magnetic field can penetrate CFL
matter. More precisely, Cooper pairs in CFL are neutral with respect to a certain
mixture of the photon and one of the gluons. Because of the smallness of the
electromagnetic coupling compared to the strong coupling, the gluon admixture
is small and the new gauge boson is called “rotated photon”. There are color
superconductors which do expel magnetic fields, for instance the color-spin-
locked (CSL) phase. In this case, Cooper pairs are formed of quarks with the
same flavor, and a Cooper pair carries total spin one (instead of zero in the CFL
phase). The CSL phase is an electromagnetic superconductor. It is of type I, i.e.,
expels magnetic fields completely. For a short review about spin-one color super-
conductors in compact stars and their effect on magnetic fields see Ref. [7].

Magnetic fields also play a role in the cooling of the star since they have an
effect on the heat transport, resulting in an anisotropic surface temperature, see
Ref. [8] and references therein. An extensive review about magnetic fields in
compact stars is Ref. [9].
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• Crust of the star. The crust of the star is a very important ingredient for the under-
standing of observations. In the conventional picture of a neutron star there is an
outer crust with an ion lattice, and an inner crust with a neutron (super)fluid
immersed in this lattice. This crust typically has a thickness of about 1 km. A lot
about the crust can be found in Refs. [10, 11]. In our discussion of neutron stars
vs. hybrid stars vs. quark stars it is important that the crust provides a crucial
distinction between an ordinary neutron star (or a hybrid star) and a quark star.
How does the crust of a quark star look? Several scenarios have been suggested.
First suppose that the surface of a quark star exhibits an abrupt transition from
strange quark matter to the vacuum. This is possible under the assumption of
the strange quark matter hypothesis we discussed in Sect. 2.2.1, because, if the
hypothesis is true, strange quark matter is stable at zero pressure. “Abrupt” means
that the density drops to zero on a length scale of about 1 fm, given by the typi-
cal length scale of the strong interaction. Now recall that (unpaired) three-flavor
quark matter contains electrons. They interact with quark matter through the elec-
tromagnetic interaction, therefore their surface will be smeared (several hundred
fm) compared to the sharp surface of the quark matter. As a consequence, an
outward-pointing electric field develops (i.e., at the surface positively charged test
particles are accelerated away from the center of the star). This electric field can
support a thin layer of positively charged ions, separated from the quark matter
by a layer of electrons. Hence a “normal” crust for a quark star is conceivable,
consisting of an ion lattice. In contrast to the crust of a neutron star, such a crust
of a quark star would be very thin, at most of the order of 100 m. See Ref. [12]
for more details about this picture of the surface of a quark star (and for other
properties of quark stars). This picture may be challenged by the possibility of a
mixed phase at the surface of the star. Here, mixed phase refers to a crystalline
structure of strangelets immersed in a sea of electrons. In this case, there would
be no electric field and thus no possibility for a “normal” crust. The quark matter
would rather have its own crystalline crust. Estimates in Ref. [13] show that it
is unlikely that such a mixed phase is formed once surface tension is taken into
account. In any case, a rigid crust, if at all present, will be much thinner in a quark
star than in a neutron star or a hybrid star.

This difference is relevant in the context of “magnetar seismology”. Quasi-
periodic oscillations observed in the aftermath of X-ray bursts from magnetars
can be related to typical oscillation frequencies of the crust. In other words,
“star quakes” have significantly different properties depending on whether one
assumes the star to be a neutron star or a quark star. In fact, the ordinary crust
explains the data quite well while the crust of a quark star seems to be incompat-
ible with the observed phenomenology [14].

• Pulsar glitches. Pulsar glitches are an interesting phenomenon related to the rota-
tion frequency, the crust (more precisely the crystalline structure of the crust),
and superfluidity. For spinning-down pulsars one observes sudden spin-ups, i.e.,
in the overall trend of a decreasing rotation frequency, the frequency increases in
irregular intervals significantly on a very short time scale. This is conventionally
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explained through superfluid vortices in the neutron superfluid that pin at the
lattice sites of the inner crust [15].

To understand this statement and the consequences for glitches, we recall the
following property of superfluids. A superfluid, be it superfluid helium, super-
fluid neutron matter, or any other superfluid, is irrotational in the sense that the
superfluid velocity has vanishing curl. Therefore, if the superfluid is rotated it
develops regions where the order parameter vanishes, i.e., where it becomes a
normal fluid.3 The angular momentum is then “stored” in these regions which
are called vortices. An array of vortices, which are “strings” in the direction of
the angular momentum, is formed with the total angular momentum of the super-
fluid being proportional to the density of vortices (because each vortex carries
one quantum of circulation). Consequently, if the rotation frequency decreases,
the array of vortices becomes sparser, i.e., the vortices move apart.

The next ingredient in the glitch mechanism is the pinning of the vortices at
the lattice of nuclei in the inner crust. Generally speaking, there is an effective
interaction between the vortices and the nuclei, resulting in a certain path of the
vortex string through the lattice which minimizes the free energy of the system.
You may think of this preferred configuration as follows. Superfluidity, i.e., neu-
tron Cooper pairing, lowers the free energy of the system. Therefore, the system
may want to put the vortices, where there is no Cooper pairing, through the
lattice sites because they are not superfluid anyway. Otherwise, i.e., by putting
them between the lattice sites, one loses pairing energy. The actual details of the
pinning mechanism are complicated and, depending on the density, the preferred
path of the vortices may in fact be between the sites, in contrast to the above
intuitive argument. However, this does not matter for our argument for the mech-
anism of glitches:

In a rotating neutron star, the neutron vortices pin at the lattice of the inner
crust. Now the star spins down. On the one hand, the vortices “want” to move
apart. On the other hand, there is an effective pinning force which keeps them at
there sites. Hence, for a while they will not move which implies that the super-
fluid (the vortex array) is spinning faster than the rest of the star. At some point,
when the tension is sufficiently large, the vortices will un-pin, move apart and
thus release their angular momentum which spins up in particular the surface of
the star whose rotation is observed. Then, they re-pin and the process starts again.
An alternative scenario, where nuclear matter is replaced by quark matter has
been suggested [16]. In our discussion of the CFL phase we have seen that
quark matter can be a superfluid. This means that one of the conditions for

3 It is instructive to view this phenomenon in analogy to a type-II superconductor. There, a mag-
netic field (if sufficiently large but not too large) penetrates the superconductor through flux tubes.
It partially destroys superconductivity, i.e., in the center of the flux tubes the order parameter is
zero. Hence the analogy is superfluid – superconductor; angular momentum – magnetic field;
vortices – flux tubes.
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the mechanism of vortex pinning is fulfilled. The second condition, a suf-
ficiently rigid lattice, may be provided by one of the unconventional color-
superconducting phases which are possible in the case of mismatched Fermi
momenta, see discussion at the end of in Sect. 4.3. Some of these phases indeed
exhibit a crystalline structure. Such a quark crystal is of very different nature than
the ion lattice because it is the energy gap from superconductivity which varies
periodically in space, giving rise to crystals characterized by surfaces where the
gap vanishes. It remains to be seen in the future which of these scenarios passes
all observational constraints and can explain the pulsar glitches or if there is a yet
unknown mechanism for these curious spin-ups.

• Other theoretical approaches to dense matter. What are the alternatives to under-
stand QCD at large, but not asymptotically large, densities? Lattice QCD, i.e.,
solving QCD by brute force on a computer, is by now a powerful tool for strong-
coupling phenomena at zero chemical potential. However, at nonzero chemical
potential, one encounters the so-called sign problem which renders lattice calcu-
lations unfeasible. Progress has been made to extend lattice calculations to small
chemical potentials, more precisely to small values of μ/T . But calculations at
large μ and small T , as needed for compact stars, are currently not within reach.
See Ref. [17] for a non-technical recent overview article about lattice QCD, in
particular its contributions to the QCD phase diagram and about the sign problem;
you may also try Ref. [18].

Because of the problems of lattice calculations at finite chemical potential one
has to rely on model calculations or on extrapolations similar to the ones dis-
cussed in these lectures. One model for quark matter we have not discussed is
the Nambu–Jona–Lasinio (NJL) model. This model does not contain gluons and
describes the interaction between quarks by an effective pointlike interaction.
It has been used to compute the QCD phase diagram at intermediate densities.
Since the result depends strongly on the parameters of the model, it should be
taken as an indicator for how the phase diagram might look, not as an accurate
prediction. Due to its simplicity it is widely used and can indeed give some inter-
esting results which serve as a guideline for the understanding of QCD. For an
extensive review about the NJL model in dense quark matter see Ref. [19]; for
an application of the NJL model in the context of compact stars, see for instance
Ref. [20].

Finally, we point out that arguments for large numbers of colors Nc may be
applied to gain some insight to QCD where Nc = 3. In particular, it has been
argued that at Nc = ∞ an interesting novel phase, termed quarkyonic matter,
populates the T -μ phase diagram [21]. The (yet unsolved) problem is to find
out whether this phase, or some modification of it, survives for Nc = 3. More
generally speaking, the large Nc approach is another approach where calculations
can be performed in a regime where everything is under rigorous control. From
these rigorous results one then tries to get closer to the regime one is interested in.
In this sense, this approach is not unlike the perturbative approach. In view of the
possible, but not at all obvious, relevance of large-Nc physics to Nc = 3 physics,
one can also apply the duality of certain string theories to field theories similar to
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QCD, based on the so-called AdS/CFT correspondence. For pedagogical reviews
see Refs. [22, 23]. This somewhat speculative but popular approach to QCD has
recently been pursued especially for large-T , small-μ physics, but is, in certain
variants, also suited for the physics at finite chemical potential.
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Appendix A
Basics of Quantum Field Theory at Finite
Temperature and Chemical Potential

Many of the discussions in the main part of these lectures rely on field-theoretical
methods, in particular on quantum field theory at finite temperature and chemical
potential. One purpose of the following basic discussion is therefore to explain how
a chemical potential is introduced in quantum field theory. We shall also discuss how
finite temperature enters the formalism, although for most quantities we discuss in
these lecture notes we consider the zero-temperature limit, which is a good approx-
imation for our purposes. For instance in the discussion of the Walecka model,
Sect. 3.1, we give the finite-temperature expressions, based on Appendix A.2, before
we set T = 0 in the physical discussion. In other parts, we do keep T �= 0 in our
results, for instance when we are interested in the cooling behavior of dense matter,
see Chap. 5.

We shall start with the Lagrangian for a complex bosonic field and derive the
partition function in the path integral formalism, taking into account Bose–Einstein
condensation. This part is particularly useful for our treatment of kaon condensation
in CFL quark matter, see Sect. 4.2.1. We shall in particular see how bosonic Mat-
subara frequencies are introduced and how the summation over these is performed
with the help of contour integration in the complex frequency plane. In the second
part of this appendix we shall then discuss the analogous derivation for fermions.

A.1 Bosonic Field

We start from the Lagrangian

L0 = ∂μϕ
∗∂μϕ − m2|ϕ|2 − λ|ϕ|4 , (A.1)

with a complex scalar field ϕ with mass m and coupling constant λ. We shall first
show how a chemical potential μ is introduced. This will lead to a new Lagrangian
L, wherefore we have denoted the Lagrangian without chemical potential by L0.
The chemical potential μ must be associated with a conserved charge. We thus
need to identify the conserved current. From Noether’s theorem we know that the
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conserved current is related to the symmetry of the Lagrangian. We see that L0 is
invariant under U (1) rotations of the field,

ϕ → e−iαϕ . (A.2)

This yields the Noether current

jμ = ∂L0

∂(∂μϕ)

δϕ

δα
+ ∂L0

∂(∂μϕ∗)
δϕ∗

δα
= i(ϕ∗∂μϕ − ϕ∂μϕ∗) , (A.3)

with ∂μ jμ = 0, and the conserved charge (density) is

j0 = i(ϕ∗∂0ϕ − ϕ∂0ϕ∗) . (A.4)

In the following we want to see how the chemical potential associated to j0 enters
the Lagrangian. The partition function for a scalar field is

Z = Tr e−β(Ĥ−μN̂ )

=
∫

Dπ

∫

periodic
Dϕ exp

[
−
∫

X
(H − μN − iπ∂τϕ)

]
. (A.5)

This equation should remind you that the partition function can be written in the
operator formalism in terms of the Hamiltonian Ĥ and the charge operator N̂ , or,
as we shall use here, in terms of a functional integral over ϕ and the conjugate
momentum π , with the Hamiltonian H and the charge density N = j0. We have
abbreviated the space-time integration by

∫

X
≡
∫ β

0
dτ
∫

d3x , (A.6)

where the integration over “imaginary time” τ = i t goes from 0 to the inverse
temperature β = 1/T . In the following, the four-vector in position space is denoted
by

X ≡ (t, x) = (−iτ, x) . (A.7)

The term “periodic” for the ϕ integral in Eq. (A.5) means that all fields ϕ over which
we integrate have to be periodic in the imaginary time direction, ϕ(0, x) = ϕ(β, x).
This is essentially a consequence of the trace operation in the first line of Eq. (A.5):
the partition function is formally reminiscent of a sum over transition amplitudes
which have the same initial and final states at “times” 0 and β.

Let us, for convenience, introduce the two real fields ϕ1, ϕ2,

ϕ = 1√
2
(ϕ1 + iϕ2) . (A.8)
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Then, the Lagrangian becomes

L0 = 1

2

[
∂μϕ1∂

μϕ1 + ∂μϕ2∂
μϕ2 − m2(ϕ2

1 + ϕ2
2) − λ

2
(ϕ2

1 + ϕ2
2)

2
]
. (A.9)

The conjugate momenta are

πi = ∂L0

∂(∂0ϕi )
= ∂0ϕi , i = 1, 2 . (A.10)

Consequently, with j0 = ϕ2π1 − ϕ1π2, which follows from Eqs. (A.4), (A.8), and
(A.10), we have

H − μN = π1∂0ϕ1 + π2∂0ϕ2 − L0 − μN

= 1

2

[
π2

1 + π2
2 + (∇ϕ1)

2 + (∇ϕ2)
2 + m2(ϕ2

1 + ϕ2
2)
]

−μ(ϕ2π1 − ϕ1π2) . (A.11)

The integration over the conjugate momenta π1, π2 can be separated from the inte-
gration over the fields ϕ1, ϕ2 after introducing the shifted momenta

π̃1 ≡ π1 − ∂0ϕ1 − μϕ2 , π̃2 ≡ π2 − ∂0ϕ2 + μϕ1 . (A.12)

This yields

π1∂0ϕ1 + π2∂0ϕ2 − H + μN = −1

2
(π̃2

1 + π̃2
2 ) + L , (A.13)

where the new Lagrangian L now includes the chemical potential,

L = 1

2

[
∂μϕ1∂

μϕ1 + ∂μϕ2∂
μϕ2 + 2μ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2)

+(μ2 − m2)(ϕ2
1 + ϕ2

2) − λ

2
(ϕ2

1 + ϕ2
2)

2
]
. (A.14)

Thus we see that the chemical potential produces, besides the expected term μj0,
the additional term μ2

(
ϕ2

1 +ϕ2
2

)
/2. This is due to the momentum-dependence of j0.

In terms of the complex field ϕ, the Lagrangian reads

L = |(∂0 − iμ)ϕ|2 − |∇ϕ|2 − m2|ϕ|2 − λ|ϕ|4 , (A.15)

which shows that the chemical potential looks like the temporal component of a
gauge field. We can now insert Eq. (A.13) into the partition function (A.5). The
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integration over conjugate momenta and over fields factorize, and the momentum
integral yields an irrelevant constant N , such that we can write

Z = N
∫

periodic
Dϕ1Dϕ2 exp

∫

X
L . (A.16)

In order to take into account Bose–Einstein condensation, we divide the field into a
constant background field and fluctuations around this background, ϕi → φi + ϕi .
A nonzero condensate φ1 + iφ2 picks a direction in the U (1) degeneracy space
and thus breaks the symmetry spontaneously. We can choose φ2 = 0 and thus may
denote φ ≡ φ1. Then, the Lagrangian (A.14) becomes

L = −U (φ2) + L(2) + L(3) + L(4), (A.17)

with the tree-level potential

U (φ2) = m2 − μ2

2
φ2 + λ

4
φ4 , (A.18)

and terms of second, third, and fourth order in the fluctuations,

L(2) = −1

2

[
−∂μϕ1∂

μϕ1 − ∂μϕ2∂
μϕ2 − 2μ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2)

+
(

m2 − μ2
)(

ϕ2
1 + ϕ2

2

)
+ 3λφ2ϕ2

1 + λφ2ϕ2
2

]
, (A.19a)

L(3) = −λφϕ1

(
ϕ2

1 + ϕ2
2

)
, (A.19b)

L(4) = −λ

4

(
ϕ2

1 + ϕ2
2

)2
. (A.19c)

We have omitted the linear terms since they do not contribute to the functional inte-
gral. Note that the cubic interactions are induced by the condensate.

In this appendix we are only interested in the tree-level contributions U
(
φ2
)

and
L(2) in order to explain the basic calculation of the partition function for the simplest
case. We therefore shall ignore the cubic and quartic contributions L(3) and L(4). We
introduce the Fourier transforms of the fluctuation fields via

ϕ(X) = 1√
T V

∑
K

e−i K ·Xϕ(K ) = 1√
T V

∑
K

ei(ωnτ+k·x)ϕ(K ) , (A.20)

with the four-momentum

K ≡ (k0,k) = (−iωn,k) , (A.21)

and with the Minkowski scalar product K · X = k0x0 − k · x = −(τωn + k · x).
(Although for convenience we have defined the time components with a factor i and
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thus can use Minkowski notation, the scalar product is essentially Euclidean.) The
normalization is chosen such that the Fourier-transformed fields ϕ(K ) are dimen-
sionless. The 0-component of the four-momentum is given by the Matsubara fre-
quency ωn . To fulfill the periodicity requirement ϕ(0, x) = ϕ(β, x) we need
eiωnβ = 1, i.e., ωnβ has to be an integer multiple of 2π , or

ωn = 2πnT , n ∈ Z . (A.22)

With the Fourier transform (A.20), and

∫

X
ei K ·X = V

T
δK ,0 , (A.23)

we have

∫

X
L(2) = −1

2

∑
K

(ϕ1(−K ), ϕ2(−K ))
D−1

0 (K )

T 2

(
ϕ1(K )

ϕ2(K )

)
, (A.24)

with the free inverse propagator in momentum space

D−1
0 (K ) =

(−K 2 + m2 + 3λφ2 − μ2 −2iμk0

2iμk0 −K 2 + m2 + λφ2 − μ2

)
. (A.25)

With Eqs. (A.16), (A.24) and using that ϕ(K ) = ϕ∗(−K ) (because ϕ(X) is real)
we can write the tree-level thermodynamic potential as

Ω

V
= − T

V
ln Z

= U (φ2) − T

V
ln
∫

Dϕ1Dϕ2 exp

[
−1

2

∑
K

(ϕ1(−K ), ϕ2(−K ))
D−1

0 (K )

T 2

(
ϕ1(K )

ϕ2(K )

)]

= U (φ2) + T

2V
ln det

D−1
0 (K )

T 2
, (A.26)

where the determinant is taken over 2 × 2 space and momentum space. Here we
have used the general formula

∫
d Dx e− 1

2 x· Âx = (2π)D/2(det Â)−1/2 , (A.27)

for a Hermitian, positive definite matrix Â, which is a generalization of the one-
dimensional Gaussian integral

∫ ∞

−∞
dx e− 1

2αx2 =
√

2π

α
. (A.28)
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To further evaluate the thermodynamic potential, we first define the tree-level
masses

m2
1 ≡ m2 + 3λφ2 , (A.29a)

m2
2 ≡ m2 + λφ2 . (A.29b)

Then, we obtain

ln det
D−1

0 (K )

T 2
= ln

∏
K

1

T 4

[(
− K 2 + m2

1 − μ2
)(

− K 2 + m2
2 − μ2

)
− 4μ2k2

0

]

= ln
∏
K

1

T 4

[(
ε+

k

)2 − k2
0

][(
ε−

k

)2 − k2
0

]

=
∑

K

[
ln

(
ε+

k

)2 − k2
0

T 2
+ ln

(
ε−

k

)2 − k2
0

T 2

]
, (A.30)

where we defined the quasiparticle energies

ε±
k =

√
E2

k + μ2 ∓
√

4μ2 E2
k + δM4 , (A.31)

with

Ek ≡
√

k2 + M2 , M2 ≡ m2
1 + m2

2

2
= m2 + 2λφ2 , δM2 ≡ m2

1 − m2
2

2
= λφ2 .

(A.32)

Even at tree-level, the quasiparticle energies (A.31) look complicated, but become
simple in the noninteracting limit,

λ = 0 : ε±
k =

√
k2 + m2 ∓ μ , (A.33)

and for vanishing chemical potential,

μ = 0 : ε±
k =

√
k2 + m2

2/1 . (A.34)

Further properties of these quasiparticle energies are discussed in the context of
kaon condensation in CFL, see Sect. 4.2.1. Next, we perform the sum over Matsub-
ara frequencies in Eq. (A.30). We use the result

∑
n

ln
ω2

n + ε2
k

T 2
= εk

T
+ 2 ln

(
1 − e−εk/T

)
+ const , (A.35)
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for a real number εk , and where “const” is a temperature-independent constant.
Before we prove this result via contour integration in the complex plane, we use
it to compute the final result for the tree-level thermodynamic potential. We insert
Eq. (A.35) into Eq. (A.30), the result into Eq. (A.26), and take the thermodynamic
limit to obtain

Ω

V
= U (φ2) + T

∫
d3k
(2π)3

[
ε+

k + ε−
k

2T
+ ln

(
1 − e−ε+

k /T
)

+ ln
(

1 − e−ε−
k /T
)]

.

(A.36)

From this expression we can for instance compute the pressure P = −Ω/V . The
first term in the integrand yields an infinite contribution which however is
temperature-independent. We may thus use a renormalization such that the vac-
uum pressure vanishes. Then, for sufficiently large temperatures, where in particular
φ = 0, particles and antiparticles yield the same contribution and we obtain

P � −2
T 4

2π2

∫ ∞

0
dx x2 ln

(
1 − e−x) = 2

π2T 4

90
. (A.37)

A.1.1 Summation Over Bosonic Matsubara Frequencies

Here we prove Eq. (A.35) via contour integration in the complex frequency plane.
Especially for more complicated Matsubara sums this is a very useful technique
as can be seen by applying the following method to the Matsubara sums in Prob-
lems A.1 and A.2.

First, in order to get rid of the logarithm, we write

∑
n

ln
ω2

n + ε2
k

T 2
=
∫ (εk/T )2

1
dx2

∑
n

1(
2nπ

)2 + x2
+
∑

n

ln
[
1 + (2nπ

)2]
. (A.38)

We now perform the sum in the integrand which, denoting εk ≡ T x , we write as a
contour integral,

T
∑

n

1

ω2
n + ε2

k

= − 1

2π i

∮

C
dω

1

ω2 − ε2
k

1

2
coth

ω

2T
. (A.39)

The second identity follows from the residue theorem,

1

2π i

∮

C
dz f (z) =

∑
n

Res f (z)|z=zn
, (A.40)

where zn are the poles of f (z) in the area enclosed by the contour C . If we can
write the function f as f (z) = ϕ(z)/ψ(z), with analytic functions ϕ(z), ψ(z), the
residues are
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Res f (z)|z=zn
= ϕ(zn)

ψ ′(zn)
. (A.41)

The contour C in Eq. (A.39) is chosen such that it encloses all poles of coth[ω/(2T )]
and none of 1/(ω2−ε2

k ). The poles of coth[ω/(2T )] are given by eω/2T−e−ω/2T = 0,
i.e., they are on the imaginary axis, ω = iωn with the Matsubara frequencies ωn . In
the above notation with the functions ϕ and ψ ,

ϕ(ω) = 1

2

eω/(2T ) + e−ω/(2T )

ω2 − ε2
k

, ψ(ω) = eω/(2T ) − e−ω/(2T ) ,

⇒ ϕ(iωn)

ψ ′(iωn)
= −T

1

ω2
n + ε2

k

, (A.42)

from which Eq. (A.39) follows immediately. Next, we may deform the contour C
(which consists of infinitely many circles surrounding the poles) and obtain

T
∑

n

1

ω2
n + ε2

k

= − 1

2π i

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2
k

1

2
coth

ω

2T

− 1

2π i

∫ −i∞−η

i∞−η

dω
1

ω2 − ε2
k

1

2
coth

ω

2T

= − 1

2π i

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2
k

coth
ω

2T
, (A.43)

where we have changed the integration variable ω → −ω in the second integral. We
now use the residue theorem a second time: we can close the contour in the positive
half-plane at infinity and pick up the pole at ω = εk ,

T
∑

n

1

ω2
n + ε2

k

= 1

2εk
coth

εk

2T
= 1

2εk

[
1 + 2 fB(εk)

]
, (A.44)

(note the minus sign from clockwise contour integration). Here,

fB(ε) ≡ 1

eε/T − 1
(A.45)

is the Bose distribution function. We have thus found

1

T

∑
n

1

(2nπ)2 + x2
= 1

T x

(
1

2
+ 1

ex − 1

)
. (A.46)

Now we insert the result into the original expression (A.38) and integrate over x2 to
obtain (with const denoting T -independent constants)
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∑
n

ln
ω2

n + ε2
k

T 2
=
∫ (εk/T )2

1
dx2 1

x

(
1

2
+ 1

ex − 1

)
+ const

= εk

T
+ 2 ln

(
1 − e−εk/T

)
+ const , (A.47)

which is the result we wanted to prove.

A.2 Fermionic Field

To describe a system of non-interacting fermions with mass m we start with the
Lagrangian

L0 = ψ
(
iγ μ∂μ − m

)
ψ , (A.48)

where ψ = ψ†γ 0. As for the bosons we are interested in adding a chemical poten-
tial to this Lagrangian. To this end, we determine the conserved current as above,
i.e., we first identify the global symmetry of the Lagrangian which is given by the
transformation ψ → e−iαψ . The conserved current is

jμ = ∂L0

∂(∂μψ)

δψ

δα
= ψγμψ , (A.49)

which yields the conserved charge (density)

j0 = ψ†ψ . (A.50)

The conjugate momentum is

π = ∂L0

∂(∂0ψ)
= iψ† . (A.51)

This means that in the case of fermions we need to treat ψ and ψ† as independent
variables. The partition function for fermions is

Z = Tr e−β(Ĥ−μN̂ )

=
∫

antiperiodic
Dψ†Dψ exp

[
−
∫

X
(H − μN − iπ∂τψ)

]
. (A.52)

This has to be compared to the analogous expression for bosons, Eq. (A.5). Recall
that the periodicity of the bosonic fields is a consequence of taking the trace in
the operator formalism. In other words, the partition function in the path integral
formalism can be derived from a transition amplitude with identical initial and final
states. In the case of fermions, the fields in the path integral are Grassmann variables,
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as a consequence of the anticommutation relations of creation and annihilation oper-
ators. In this case, the trace involves a transition amplitude where initial and final
states differ by a sign. Therefore, in the fermionic partition function the integration
is over antiperiodic fields ψ(0, x) = −ψ(β, x) and ψ†(0, x) = −ψ†(β, x).

With the Hamiltonian

H = π∂0ψ − L0 = ψ(iγ · ∇ + m)ψ , (A.53)

(here and in the following we mean by the scalar product γ · ∇ the product where
the Dirac matrices appear with a lower index γi ) we thus obtain

Z =
∫

antiperiodic
Dψ†Dψ exp

[∫

X
ψ
(
−γ 0∂τ − iγ · ∇ + γ 0μ − m

)
ψ

]
. (A.54)

In this case we cannot separate the π ∼ ψ† integration from the ψ integration.
Remember that, in the bosonic case, this led to a new Lagrangian which contained
the chemical potential not just in the term j0μ. Here, the Lagrangian with chemical
potential simply is

L = ψ̄(iγ μ∂μ + γ 0μ − m)ψ . (A.55)

Note that again the chemical potential enters just like the temporal component of
a gauge field that couples to the fermions. Analogously to the bosonic case, we
introduce the (dimensionless) Fourier-transformed fields

ψ(X) = 1√
V

∑
K

e−i K ·Xψ(K ) , ψ(X) = 1√
V

∑
K

ei K ·Xψ(K ) , (A.56)

(note the different dimensionality of fields compared to bosons; here the field ψ(X)

in position space has mass dimension 3/2). Again we denote k0 = −iωn such
that K · X = −(ωnτ + k · x). Now antiperiodicity, ψ(0, x) = −ψ(β, x), implies
eiωnβ = −1 and thus the fermionic Matsubara frequencies are

ωn = (2n + 1)πT , n ∈ Z . (A.57)

With the Fourier decomposition we find

∫

X
ψ
(
−γ 0∂τ − iγ · ∇ + γ 0μ − m

)
ψ = −

∑
K

ψ†(K )
G−1

0 (K )

T
ψ(K ) , (A.58)

where the free inverse fermion propagator in momentum space is

G−1
0 (K ) = −γ μKμ − γ 0μ + m . (A.59)
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Although not needed for the rest of the calculation in this appendix, let us intro-
duce a useful form of the inverse propagator in terms of energy projectors. This
form is convenient for more involved calculations such as done in Chaps. 4 and 5.
Equivalently to Eq. (A.59) we can write

G−1
0 (K ) = −

∑
e=±

(k0 + μ − eEk)γ
0Λe

k , (A.60)

where Ek = √
k2 + m2, and where the projectors onto positive and negative energy

states are given by

Λe
k ≡ 1

2

(
1 + eγ 0 γ · k + m

Ek

)
. (A.61)

These (Hermitian) projectors are complete and orthogonal,

Λ+
k + Λ−

k = 1 , Λe
kΛ

e′
k = δe,e′Λe

k . (A.62)

The first property is trivial to see, the second follows with {γ 0, γ i } = 0 which
follows from the general anticommutation property {γ μ, γ ν} = 2gμν , and with
(γ · k)2 = −k2.

From the form of the inverse propagator (A.60) we can immediately read off the
propagator itself,

G0(K ) = −
∑
e=±

Λe
kγ

0

k0 + μ − eEk
. (A.63)

With the properties (A.62) one easily checks that G−1
0 G0 = 1. One can also rewrite

(A.63) as

G0(K ) = −γ μKμ − γ 0μ − m

(k0 + μ)2 − E2
k

. (A.64)

Let us now come back to the calculation of the partition function. For the functional
integration we use

∫ N∏
k

dη†
k dηk exp

⎛
⎝−

N∑
i, j

η
†
i Di jη j

⎞
⎠ = det D . (A.65)

Note the difference of this integration over Grassmann variables η†, η to the corres-
ponding formula for bosons (A.27). We obtain for the partition function
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Z = det
G−1

0 (K )

T
= det

1

T

(−(k0 + μ) + m −σ · k
σ · k (k0 + μ) + m

)
, (A.66)

where the determinant is taken over Dirac space and momentum space, and where
σ1, σ2, σ3 are the Pauli matrices. We can use the general formula

det

(
A B
C D

)
= det(AD − B D−1C D) , (A.67)

for matrices A, B, C , D with D invertible, to get

ln Z =
∑

K

ln

(
E2

k − (k0 + μ)2

T 2

)2

, (A.68)

where we have used (σ · k)2 = k2. With k0 = −iωn we can write this as

ln Z =
∑

K

ln

(
E2

k + (ωn + iμ)2

T 2

)2

=
∑

K

(
ln

E2
k + (ωn + iμ)2

T 2
+ ln

E2
k + (−ωn + iμ)2

T 2

)

=
∑

K

(
ln

ω2
n + (Ek − μ)2

T 2
+ ln

ω2
n + (Ek + μ)2

T 2

)
, (A.69)

where, in the second term of the second line, we have replaced ωn by −ωn which
does not change the result since we sum over all n ∈ Z. The third line can be easily
checked by multiplying out all terms.

Next we need to perform the sum over fermionic Matsubara frequencies. This is
similar to the bosonic case and yields

∑
n

ln
ω2

n + ε2
k

T 2
= εk

T
+ 2 ln

(
1 + e−εk/T

)
+ const . (A.70)

Using this result to evaluate Eq. (A.69) and taking the thermodynamic limit yields
the thermodynamic potential Ω = −T ln Z ,

Ω

V
= −2

∫
d3k
(2π)3

[
Ek + T ln

(
1 + e−(Ek−μ)/T

)
+ T ln

(
1 + e−(Ek+μ)/T

)]
.

(A.71)

The overall factor 2 accounts for the two spin states of the spin-1/2 fermion. Together
with the particle/antiparticle degrees of freedom we recover all four degrees of
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freedom of the Dirac spinor. Again we conclude this section by computing the
pressure for large temperatures,

P � 4
T 4

2π2

∫ ∞

0
dx x2 ln

(
1 + e−x) = 4 · 7

8

π2T 2

90
. (A.72)

Comparing with the bosonic pressure (A.37) we see that for large T a single
fermionic degree of freedom contributes 7/8 times as much to the thermal pressure
as a single bosonic degree of freedom.

A.2.1 Summation Over Fermionic Matsubara Frequencies

It remains to prove Eq. (A.70) by summing over fermionic Matsubara frequencies.
As for the bosonic case, we write

∑
n

ln
ω2

n + ε2
k

T 2
=
∫ (εk/T )2

1
dx2

∑
n

1(
2n + 1

)2
π2 + x2

+
∑

n

ln
[
1+(2n+1

)2
π2
]
.

(A.73)
This time, we need to use the tanh instead of the coth when we write the sum in
terms of a contour integral,

T
∑

n

1

ω2
n + ε2

k

= − 1

2π i

∮

C
dω

1

ω2 − ε2
k

1

2
tanh

ω

2T
. (A.74)

(We have denoted εk ≡ xT .) The poles of tanh[ω/(2T )] are given by the zeros
of eω/(2T ) + e−ω/(2T ), i.e., they are located at i times the fermionic Matsubara
frequencies, ω = iωn . The contour C encloses these poles and none of the poles
of 1/(ω2 − ε2

k ). Then, with the residue theorem and with

(
eω/(2T ) − e−ω/(2T )

)∣∣∣
ω=iωn

= 2i(−1)n , (A.75a)

d

dω

(
eω/(2T ) + e−ω/(2T )

)∣∣∣∣
ω=iωn

= i(−1)n

T
, (A.75b)

one confirms Eq. (A.74). We can now close the contour in the positive half-plane to
obtain

T
∑

n

1

ω2
n + ε2

k

= − 1

2π i

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2
k

tanh
ω

2T

= 1

2εk
tanh

εk

2T
= 1

2εk
[1 − 2 fF (εk)] , (A.76)
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where

fF (ε) ≡ 1

eε/T + 1
(A.77)

is the Fermi distribution function. Inserting this result into Eq. (A.73) yields

∑
n

ln
ω2

n + ε2
k

T 2
=
∫ (εk/T )2

1
dx2 1

x

(
1

2
− 1

ex + 1

)
+ const

= εk

T
+ 2 ln

(
1 + e−εk/T

)
+ const , (A.78)

which proves Eq. (A.70).

Problems

A.1 Matsubara sum for boson loop
Show via contour integration that

T
∑
k0

1

(k2
0 − ε2

1)[(p0 − k0)2 − ε2
2]

= −
∑

e1,e2=±

e1e2

4ε1ε2

1 + fB(e1ε1) + fB(e2ε2)

p0 − e1ε1 − e2ε2
,

(A.79)
with k0 = −iωn , p0 = −iωm bosonic Matsubara frequencies, and ε1, ε2 > 0.

A.2 Matsubara sum for fermion loop
Prove via contour integration the following result for the summation over fermionic
Matsubara frequencies,

T
∑
k0

(k0 + ξ1)(k0 + q0 + ξ2)(
k2

0 − ε2
1

) [
(k0 + q0)2 − ε2

2

]

= − 1

4ε1ε2

∑
e1,e2=±

(ε1 − e1ξ1)(ε2 − e2ξ2)

q0 − e1ε1 + e2ε2

fF (−e1ε1) fF (e2ε2)

fB(−e1ε1 + e2ε2)
, (A.80)

where k0 = −iωn with fermionic Matsubara frequencies ωn , and q0 = −iωm with
bosonic Matsubara frequencies ωm , and where ξ1, ξ2, ε1, ε2 > 0 are real numbers.
The result of this problem is used in the calculation of the neutrino emissivity in
Chap. 5.
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2SC phase Color superconductor in which strange quarks and quarks of one color
remain unpaired. Because of the asymmetry induced by the strange quark mass,
viable candidate for the ground state of quark matter at moderate chemical potential.
In these lectures we discuss the 2SC phase in the context of neutrino emissivity, to
illustrate the effect of both paired and unpaired quarks.

AdS/CFT correspondence Theoretical tool not discussed in these lectures, but an
interesting approach to tackle QCD at strong coupling. The idea is that – relatively
simple – calculations in the gravity approximation of a certain string theory provide
results for the – otherwise hard to access – strong coupling limit of a corresponding
(“dual”) field theory. The problem is that currently no gravity dual of QCD is known.

Anomalous propagator Technically speaking, off-diagonal components of the
propagator in Nambu–Gorkov space; nonzero in the case of a superconductor or
a superfluid. More physically speaking, anomalous propagators describe a fermion
which is, via the Cooper pair condensate, converted into a fermion hole.

Asymptotic freedom Important property of QCD which says that the running cou-
pling constant of QCD becomes small for large exchanged momenta. For our con-
text this means that quarks at large densities, where the distance between them is
small and hence the exchanged momentum large, are weakly interacting; quarks at
infinite density are free. In compact stars, however, the density is large, but by no
means asymptotically large.

Axial anomaly Non-conservation of the axial current in QCD. In our context of
(moderately) dense matter originating mainly from instantons which are certain
semi-classical gauge field configurations. Leads to an explicit breaking of the axial
U (1)A, which is a subgroup of the chiral group, and thus gives a large mass to
the η′.

Bag model (MIT bag model) Simple model to take into account confinement. Via
the bag constant, an energy penalty is introduced by hand for the deconfined phase.
The model amounts to the picture of a hadron as a bag which confines the quarks;
the bag exerts an external pressure on the quarks, given by the bag constant. In our
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astrophysical context, the bag model is a simple way to compare free energies of
dense quark matter and dense nuclear matter.

BCS theory Original theory for electronic superconductors, developed in 1957 by
Bardeen, Cooper, and Schrieffer. Many concepts and approximations can be adopted
for nuclear and quark matter. In color-superconducting quark matter, an important
difference to BCS theory is the parametric dependence of the pairing gap on the
coupling constant due to long-range interactions via magnetic gluons.

β-decay Process due to the weak interaction of the form n → p + e + ν̄e in
nuclear matter and d → u + e + ν̄e in quark matter. Relevant in these lectures for
two reasons: firstly, equilibrium with respect to this process (β-equilibrium) yields
important constraints for the chemical potentials and secondly, this process con-
tributes to the neutrino emissivity which in turn is responsible for the cooling of a
compact star.

Bogoliubov coefficients Momentum-dependent coefficients in the theory of super-
conductivity and superfluidity which characterize the mixing of fermions and
fermion holes due to Cooper pair condensation. In these lectures, the Bogoliubov
coefficients arise naturally in the calculation of the neutrino emissivity in color-
superconducting quark matter.

Cabibbo–Kobayashi–Maskawa (CKM) matrix Matrix that characterizes the rel-
ative strength of the weak interaction for different quark flavors. In these lectures
relevant for the calculation of the neutrino emissivity in quark matter.

Chiral symmetry For massless quarks, QCD possesses a global symmetry for
right- and left-handed quarks separately, called chiral symmetry. This symmetry can
be spontaneously broken, giving rise to Goldstone modes. These Goldstone modes
(or pseudo-Goldstone modes in the case of nonzero quark masses) are for instance
pions and kaons. In these lectures we discuss kaon condensation in nuclear and
quark matter (in quark matter, chiral symmetry is spontaneously broken in the CFL
phase).

Color superconductivity Cooper pair formation and condensation in cold and
dense quark matter, analogous to electronic superconductivity in metals. If quark
matter is present in compact stars, it can be expected to be a color superconductor.

Color-flavor locking (CFL) Ground state of three-flavor quark matter at asympto-
tically large densities. Particularly symmetric color superconductor where the order
parameter is invariant only under simultaneous color and flavor transformations.
May persist down to densities where the hadronic phase takes over or may be
replaced before this transition by a different color superconductor because of the
effects of the strange quark mass.

Compact star Very dense astrophysical object with a mass close to the sun’s mass
and a radius of about ten kilometers. The term shows our ignorance of the exact
composition of these objects. They may be neutron stars, hybrid stars, or quark stars.
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In a more general terminology, compact star also is used to include white dwarfs and
black holes, neither of which are the subject of these lectures.

Constituent quark mass Quark mass including the quark’s interaction energy in
a baryon, such that the sum of the three constituent quark masses adds up to the
baryon mass. More generally, in dense matter the density-dependent “constituent”
quark mass includes any finite-density effects. Can be hundreds of MeV larger than
the current quark mass.

Cooper pairs Microscopic explanation for superfluidity and superconductivity
within BCS theory. Arise from an instability of the Fermi surface in the presence
of an arbitrarily small interaction. In compact stars, there are possibly Cooper pairs
of neutrons, protons, hyperons and/or quarks.

Crust Outer, km thick, layer of a neutron star or hybrid star. Composed of ordinary
nuclei which form a crystalline structure and which, upon increasing the density and
thus going further inside the star, become more and more neutron rich. In the inner
crust a neutron superfluid is immersed in the lattice of nuclei. Quark stars have, if at
all, much thinner crusts.

Current quark mass Quark mass without effects from the interactions with other
quarks and gluons, see also constituent quark mass. Since interactions become weak
at asymptotically large densities (much larger than densities in compact stars), cur-
rent and constituent quark masses become identical in this limit.

Dense matter In these lectures, dense matter means matter at densities of a few
times nuclear ground state density, as expected in the interior of compact stars.
Governed by the strong interaction, and thus very difficult to describe theoretically.
We discuss several theoretical concepts and sometimes have to escape to lower or
even higher densities, just to make life simpler.

Equation of state Relation between the pressure and the energy density for a given
form of dense matter. In our context, the equation of state determines, together with
the TOV equation, the mass-radius relation of a compact star. In particular, a stiff
(soft) equation of state allows for a large (small) maximum mass.

Goldstone boson Massless boson arising from spontaneous symmetry breaking of
a global symmetry. The only exact (i.e., truly massless) Goldstone boson in dense
matter is the one associated to superfluidity, i.e., to the breaking of baryon number
conservation. Such a mode exists in a nuclear superfluid as well as in the color-flavor
locked phase.

Hybrid star Compact star with a quark matter core and a nuclear mantle. Most
likely scenario to find quark matter in a compact star.

Hyperon Baryon with nonzero strangeness. Hyperons may occur in hadronic mat-
ter at sufficiently large densities. In these lectures only discussed briefly, in the
context of Walecka-like models.
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Incompressibility Thermodynamic property of nuclear matter at the saturation
density, sometimes also called compression modulus. Can be (at least indirectly
and approximately) determined in the experiment and thus yields a value that can,
among other quantities, be used to fit the parameters of theoretical models, in these
lectures the coupling constants of the Walecka model with scalar interactions.

Kaon condensation Possible example of Bose–Einstein condensation in a compact
star. May appear at sufficiently large densities. Is possible not only in nuclear matter,
but also in quark matter, where kaons exist in the CFL phase. These kaons carry the
same quantum numbers as the usual kaons, however are made of two quarks and
two quark holes.

Kepler frequency Absolute upper limit for the rotation frequency of compact stars
beyond which mass shedding at the equator sets in. Given by the equality of the
centrifugal and gravitational forces (more precisely, the general relativistic version
thereof). For typical compact stars in the ms−1 regime, i.e., for some pulsars actually
observed rotation frequencies are not too far from that limit. Below that limit stars
can suffer from other rotational instabilities, for instance the r-mode instability.

Landau mass Effective mass of (nonrelativistic) fermions at the Fermi surface, in
the framework of Landau’s Fermi liquid theory. In these lectures, the Landau mass
for nucleons is mentioned in the context of the Walecka model where its experimen-
tal value serves to fit the parameters of the model.

Lattice QCD QCD on the computer. Powerful method to perform calculations
from first principles. Not discussed in these lectures, mostly because lattice QCD is
currently unable to provide results at large chemical potential and small temperature
because of the so-called sign problem.

Low-mass X-ray binary (LMXB) System of two stars, where a pulsar is accreting
matter from its companion which has a mass typically smaller than one solar mass
(as opposed to high-mass X-ray binaries where the companion has a mass larger than
about ten solar masses). Measured rotation frequencies of pulsars in LMXBs are
mentioned in our brief discussion of the r -mode instability of rotating compact stars.

Magnetar Compact star with unusually large magnetic field, up to 1015 G at the
surface and possibly larger in the interior.

Matsubara frequency In thermal field theory, the time direction in Minkowski
space becomes imaginary and compact, giving rise to Euclidean space with discrete
energies, given by the Matsubara frequencies. In these lectures we mostly consider
the zero-temperature limit, but in some instances we have to perform a sum over
Matsubara frequencies.

Mixed phase Coexistence of two (or more) phases which occupy certain volume
fractions – for instance bubbles of one phase immersed in the other phase – in a
given total volume. In our context, global charge neutrality, as opposed to local
charge neutrality, allows for mixed phases for instance of nuclei and nuclear matter
or quark and hadronic matter. These phases may be disfavored by large surface
energy costs.
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Nambu-Gorkov space Contains Nambu-Gorkov spinors which arise from a dou-
bling of the fermionic degrees of freedom in the theoretical description of super-
conductors and superfluids. Allows to introduce Cooper pairing in the off-diagonal
elements of the Nambu-Gorkov propagators. See also anomalous propagators.

Nambu-Jona-Lasinio (NJL) model Phenomenological model, not discussed in
these lectures, where the QCD interaction between quarks is replaced by a point-
like four-quark interaction. Since it has attraction in the same channels as QCD, this
model is frequently used to describe color-superconducting quark matter at moder-
ate densities.

Neutron star Compact star made of neutron-rich nuclear matter. In some literature
the term neutron star is also used to include the possibility of a quark matter core.
Mostly, also in these lectures, these stars are called hybrid stars.

Nuclear pasta Mixed phase of ordinary nuclei (ions) and nuclear matter, typically
found in the inner cores of neutron stars. Because different geometries can be real-
ized – spheres, rods, slabs, the latter two reminiscent of spaghetti or lasagna – these
phases have been termed nuclear pasta. In these lectures we discuss the possibility
of mixed phases of quark and hadronic matter.

Pion condensation Bose–Einstein condensation of pions in nuclear matter.
Although pions are lighter than kaons in the vacuum, kaon condensation seems to be
more likely in dense nuclear matter. Therefore, in these lectures, kaon condensation,
not pion condensation, is discussed.

Pseudo-Goldstone boson Less impressive brother of the Goldstone boson, arising
from spontaneous breaking of a global symmetry which is broken explicitly by a
small amount (small compared to the scale of the spontaneous breaking). Light, but
not exactly massless. Dense matter is full of pseudo-Goldstone modes, for instance
mesons in nuclear matter or color-flavor-locked quark matter, arising from the spon-
taneous breaking of chiral symmetry which is explicitly broken by quark masses.

Pulsar Star whose radiation is observed in periodic pulses. Pulsars are rotating
compact stars with large magnetic fields; their apparent pulsation is due to the align-
ment of the radiation in a beam along the magnetic axis. When the magnetic axis is
different from the rotation axis, the beam may point towards the earth periodically,
just as the light of a lighthouse flashes periodically when you observe it from the
beach.

Pulsar glitch Sudden spin-up of a rotating compact star. Not discussed in detail in
these lectures but very interesting phenomenon since closely related to the micro-
scopic physics, presumably to crystalline structures and vortices in the star.

QCD phase diagram Collection of equilibrium states of QCD, typically depicted
in the plane of quark (or baryon) chemical potential and temperature. We roughly
know where compact stars sit in this diagram, but we do not know the phase(s) that
occupy this region of the diagram. These lectures are about exploring this unknown
territory.
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Quantum chromodynamics (QCD) Theory of the strong interaction. Governs the
physics that determines the ground state of dense matter present in a compact star. In
these lectures we perform one explicit calculation in QCD and discuss several effec-
tive approaches to this very elegant, but for most practical purposes very difficult,
theory.

Quarkyonic matter Form of dense matter covering a large portion of the QCD
phase diagram for the case of asymptotically large number of colors. Not discussed
in these lectures because there are only three colors in the real world. However, it is
a viable option that a small region of quarkyonic matter survives and thus becomes
also important for compact stars.

Quasiparticle Term originally used in condensed matter physics and carried over
to dense QCD matter. Absorbs interactions of the original particles into effective
new particles. For instance, quasiparticles in a superconductor are gapped due to the
attractive interaction between the original particles.

r-Modes Non-radial oscillations of a star with the Coriolis force as the restoring
force. Interesting for dense matter physics because they grow unstable in a pulsar
unless the matter inside the star is sufficiently viscous.

Rotated electromagnetism Effect in some color superconductors which is respon-
sible for them being no electromagnetic superconductors. Therefore important for
the physics of compact stars since magnetic fields penetrate these color supercon-
ductors. Technically speaking, rotated electromagnetism refers to a gauge boson
which is a mixture of a gluon and the photon.

Saturation density Density at which the binding energy is minimized, here always
used in the context of nuclear matter for which the saturation density is approxi-
mately 0.15 baryons per fm3 and the corresponding binding energy per nucleon is
about 16 MeV.

Sign problem Problem of QCD lattice calculations at finite values of the baryon
chemical potential. For finite chemical potential, the action, more precisely the
quark determinant in the functional integral of the partition function, loses its pos-
itivity and even becomes complex. This makes the probabilistic sampling method
(“Monte Carlo method”), on which lattice QCD is based, unfeasible. In our context
this means that currently there is no input from lattice calculations to the properties
of dense matter.

Strange quark matter hypothesis Hypothesis that strange quark matter, not
nuclear matter, is the ground state at zero pressure. The hypothesis does not con-
tradict our existence since, even if the hypothesis is true, the transition from nuclear
matter, made of u and d quarks, to strange quark matter is essentially forbidden. We
discuss that, within the bag model, the strange quark matter hypothesis is true if the
bag constant is between a lower bound (since we know that ordinary nuclear matter
is stable with respect to two-flavor quark matter) and an upper limit (beyond which
nuclear matter is absolutely stable).
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Strange star (quark star) Compact star made entirely out of quark matter, thus
the most radical scenario for quark matter in compact stars.

Strangelet Small nugget of strange quark matter. Stretching the original meaning a
bit – well, from femtometers to kilometers – a strange star is a huge strangelet. Rel-
evant for us in the context of the strange quark matter hypothesis: since strangelets
would convert neutron stars into strange stars, the unambiguous observation of a
single neutron star would invalidate the strange quark matter hypothesis, provided
that there are enough strangelets in the cosmos to hit neutron stars.

Supernova Compact stars are expected to be born in (type II) supernova explo-
sions, where a giant star, after burning its nuclear fuel, undergoes a gravitational
collapse. The energy of the explosion is mostly released in the form of neutrinos.
The theoretical description of supernovae requires very complicated hydrodynami-
cal simulations.

Tolman–Oppenheimer–Volkov (TOV) equation Differential equation from gen-
eral relativity for the mass, pressure, and energy density as functions of the distance
from the center of the star. In connection with the equation of state, which relates
energy density and pressure, used to compute the mass-radius relation for a compact
star.

Unpaired quark matter Term used for (dense) quark matter which does not form
Cooper pairs and thus is no color superconductor. Since dense quark matter is
expected to be some kind of color superconductor, completely unpaired dense quark
matter is unlikely to exist. Therefore mostly used for reference calculations or when,
for the computed quantity, it is a good approximation to paired quark matter.

Urca process Most efficient process for neutrino emission, and thus for the cooling
of the star. In quark matter the direct Urca process is given by u + e → d + νe and
variants thereof. We compute the emission rate of this process in detail in these
lectures. In the modified Urca process, a spectator particle is added which increases
the available phase space.

Viscosity (bulk/shear) Transport coefficients of nuclear or quark matter relevant in
particular in the context of rotation and oscillation of the star. Requires microscopic
calculation of processes typically governed by the weak interaction. Not discussed
in detail in these lectures. See also r-modes.

Walecka model Phenomenological model for interacting nuclear matter, based on
Yukawa couplings of the nucleons with the σ and ω meson. Used for extrapolation
to large densities after fitting the parameters of the model at saturation density. Dis-
cussed in these lectures as a basic example for numerous more complicated nuclear
models of similar kind.

White dwarf Dense star with a mass of about the sun’s mass and radius of a few
thousand kilometers, which makes it less dense than a neutron star. Composed of
nuclei immersed in a degenerate electron gas.
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